answersLogoWhite

0

ATP hydrolysis

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Physics

What is the source of energy on the myosin head?

The energy on the myosin head comes from ATP (adenosine triphosphate) molecules. When ATP is hydrolyzed, it releases energy that is used to power the movement of the myosin head during muscle contraction.


What provides the energy to swivel the head of myosin?

The energy to swivel the head of myosin is provided by ATP (adenosine triphosphate) molecules. ATP is hydrolyzed to ADP (adenosine diphosphate) and inorganic phosphate during the power stroke of muscle contraction, releasing energy that causes the myosin head to swivel and slide along actin filaments.


What is needed to attach and detach myosin heads from actin?

For attachment of myosin heads to actin, calcium ions must bind to troponin, causing tropomyosin to move out of the way, exposing the binding site on actin. ATP then binds to the myosin head, leading to its activation and attachment to actin. For detachment, ATP is hydrolyzed, causing a conformational change in the myosin head that releases it from actin.


What is the compound that binds myosin and provides energy for the power stroke?

Adenosine triphosphate (ATP) is the compound that binds to myosin and provides the energy needed for the power stroke in muscle contraction. Myosin hydrolyzes ATP to ADP and inorganic phosphate during the power stroke, releasing energy that enables the myosin head to move along the actin filament.


What is the energy transformation of a matchbox?

When a match is struck, the friction between the match head and the rough surface converts mechanical energy into heat energy through the process of combustion. The heat energy then ignites the matchstick, releasing light and heat energy as it burns.

Related Questions

What substances causes the myosin head to change shape?

ATP (adenosine triphosphate) is the main substance that causes the myosin head to change shape during muscle contraction. When ATP binds to the myosin head, it energizes the myosin molecule and allows it to detach from actin, resetting the myosin head for the next contraction cycle.


What acts as ATPase during the contraction cycle of muscle?

myosin cross-bridges


What immediately follows the binding of ATP to the myosin head?

The myosin head pivots, moving the actin strand.


What is the source of energy on the myosin head?

The energy on the myosin head comes from ATP (adenosine triphosphate) molecules. When ATP is hydrolyzed, it releases energy that is used to power the movement of the myosin head during muscle contraction.


When does the myosin head cock back to store energy for the next cycle?

The myosin head cocks back to store energy for the next cycle during the cross-bridge cycling process in muscle contraction. This occurs after the powerstroke phase, where the myosin head binds to actin and pulls the thin filament towards the center of the sarcomere. The cocking of the myosin head allows it to reset and be ready for the next binding to actin during muscle contraction.


Which molecule binds to the myosin head in order to break the actin-myosin bond?

ATP


What does the release of ADP and P from the myosin head cause?

The release of ADP and P from the myosin heads causes the myosin heads to change shape.


What is a myofilament with a knob like head?

Myosin


What is the myofilament with a knob like head?

Myosin


Does myosin have the ability to swivel when powered by ATP?

Yes...ATP causes myosin to detach from actin. Then, Hydrolysis of ATP, which results in ADP and P, causes conformational change in myosin head to swivel or pivot about its axis and then weakly bind to an actin filament. Once the myosin head binds, a conformational change in the myosin head will cause the P to leave (the ADP is still stuck on). The leaving of the P causes the power stroke or "the pulling of the actin filament/rowing stroke". ADP then leaves and the myosin is now back at its original state.


What are the molecules are attached to the myosin head from the previous cycle of movement?

Molecules attached to the myosin head from the previous movement cycle are inorganic phosphate and ADP (adenosine diphosphate). These molecules are released when the myosin head binds to actin, leading to the power stroke of muscle contraction.


When ATP attaches to a myosin head, what specific role does it play in the process of muscle contraction?

When ATP attaches to a myosin head during muscle contraction, it provides the energy needed for the myosin head to detach from actin, allowing the muscle to relax and reset for the next contraction.