The buoyant force on an object is determined by the weight of the fluid displaced by the object. This force is equal to the weight of the fluid that the object displaces, according to Archimedes' principle. It depends on the density of the fluid, the volume of fluid displaced, and the gravitational pull on the object.
The buoyant force determines whether an object will float. This force is equal to the weight of the fluid displaced by the object, and if the buoyant force is greater than the object's weight, the object will float.
The buoyant force, which is equal to the weight of the fluid displaced by the object, determines whether an object will float. If the buoyant force is greater than the weight of the object, it will float. If the buoyant force is less than the weight of the object, it will sink.
The buoyant force acting on an object in a fluid is determined by the volume of the object displaced by the fluid. This volume is known as the displaced fluid volume, and it depends on the shape and size of the object in relation to the fluid.
An object's buoyant force is determined by the volume of fluid it displaces and the density of the fluid. If the object's weight is less than the buoyant force acting on it, the object will float; if greater, it will sink. Archimedes' principle states that the buoyant force acting on an object is equal to the weight of the fluid displaced by the object.
Yes, the buoyant force on an object is equal to the weight of the fluid displaced by the object. This depends on the volume of the object that is submerged in the fluid, as it determines the amount of fluid displaced.
The buoyant force determines whether an object will float. This force is equal to the weight of the fluid displaced by the object, and if the buoyant force is greater than the object's weight, the object will float.
The buoyant force, which is equal to the weight of the fluid displaced by the object, determines whether an object will float. If the buoyant force is greater than the weight of the object, it will float. If the buoyant force is less than the weight of the object, it will sink.
The buoyant force acting on an object in a fluid is determined by the volume of the object displaced by the fluid. This volume is known as the displaced fluid volume, and it depends on the shape and size of the object in relation to the fluid.
An object's buoyant force is determined by the volume of fluid it displaces and the density of the fluid. If the object's weight is less than the buoyant force acting on it, the object will float; if greater, it will sink. Archimedes' principle states that the buoyant force acting on an object is equal to the weight of the fluid displaced by the object.
Yes, the buoyant force on an object is equal to the weight of the fluid displaced by the object. This depends on the volume of the object that is submerged in the fluid, as it determines the amount of fluid displaced.
The buoyant force exerted on an object submerged in water is determined by the object's volume and the density of the fluid it is in. Specifically, the buoyant force is equal to the weight of the fluid that the object displaces.
This is archemedies principle. This is a balance between the force on the water displaced by gravity compared to the force on the floating object due to gravity. That is if the average density of the object that whishes to float is less then water then it will float. If it is greater then it will sink.For a boat the average density is the average of the density of the hull and the air inside the hull.
The buoyant force is determined by the weight of the fluid displaced by an object. This force is equal to the weight of the fluid that would occupy the volume of the immersed part of the object. buoyant force is higher if the fluid is denser or if more of the object's volume is submerged.
The buoyant force is the upward force exerted on an object submerged in a fluid due to the density difference between the object and the fluid. Gravity acts downward on the object, while the buoyant force opposes gravity, creating the net force that determines whether the object sinks or floats. The buoyant force is directly related to the density of the fluid and the volume of the displaced fluid, according to Archimedes' principle.
It is not the weight of the immersed object but the volume of the object would affect the buoyant force on the immersed object because the buoyant force is nothing but the weight of the displaced liquid whose volume is equal to that of the immersed object.
If the object is floating, then the buoyant force is equal to the object's weight.
The buoyant force on a massless object is equal to the weight of the fluid displaced by the object. This is because the buoyant force depends on the volume of fluid displaced, not the mass of the object.