Static Friction.
When a plane is sitting still on the tarmac, the main forces acting on it are gravitational force pulling it towards the center of the Earth and normal force acting perpendicular to the surface of the tarmac to support the weight of the plane. Additionally, there may be small frictional forces between the wheels of the plane and the tarmac keeping it from moving.
When a plane is still on the ground, the main forces acting on it are weight and normal force. Weight is the force due to gravity acting downward, while the normal force is the force exerted by the ground perpendicular to the plane to support its weight. Additionally, there may be frictional forces acting on the wheels to prevent the plane from moving.
When an airplane is still on the ground, the main forces acting on it are the gravitational force acting downwards and the normal force exerted by the ground acting upwards to support the weight of the airplane. There are typically no aerodynamic forces acting on the airplane until it starts moving.
Yes, it is true that the net force acting on you when you sit still in a chair is zero. This is because the force due to gravity pulling you downwards is balanced by the normal force exerted by the chair pushing you upwards, resulting in no acceleration in any direction.
When a car is still, the main forces acting on it are the gravitational force pulling it downwards and the normal force from the ground pushing it upwards. These two forces are equal in magnitude and opposite in direction, resulting in a net force of zero.
If there is no net force acting on an object then the movement of the object doesn't change. If it is sitting still, then it remains sitting still. If it is moving, then it continues moving at the same speed in the same direction.
The chair in pushing you up and the gravity pushing you down
When a plane is sitting still on the tarmac, the main forces acting on it are gravitational force pulling it towards the center of the Earth and normal force acting perpendicular to the surface of the tarmac to support the weight of the plane. Additionally, there may be small frictional forces between the wheels of the plane and the tarmac keeping it from moving.
When a plane is still on the ground, the main forces acting on it are weight and normal force. Weight is the force due to gravity acting downward, while the normal force is the force exerted by the ground perpendicular to the plane to support its weight. Additionally, there may be frictional forces acting on the wheels to prevent the plane from moving.
When an airplane is still on the ground, the main forces acting on it are the gravitational force acting downwards and the normal force exerted by the ground acting upwards to support the weight of the airplane. There are typically no aerodynamic forces acting on the airplane until it starts moving.
Since force is a function of acceleration and an object at rest has zero acceleration, then then net force is zero as well.
Yes, it is true that the net force acting on you when you sit still in a chair is zero. This is because the force due to gravity pulling you downwards is balanced by the normal force exerted by the chair pushing you upwards, resulting in no acceleration in any direction.
An object with balanced forces acting on it is still. An object with unbalanced forces acting on them moves at an non constant velocity. It is possible for an object to have balanced forces acting on it and yet move in a vacuum.
on a still car the weight force is down, and is balanced with the reaction force (working upwards). friction of forward and balanced with drag - backwards. ;)
When a car is still, the main forces acting on it are the gravitational force pulling it downwards and the normal force from the ground pushing it upwards. These two forces are equal in magnitude and opposite in direction, resulting in a net force of zero.
Yes, the object can have equal forces acting in opposite directions: 5N ->[]<- 5N The object will have forces acting upon it, but will not move.
If balanced forces are acting on an object, the object will remain at rest or continue moving at a constant velocity. Even though there is no acceleration, it might still appear as if a net force is acting on the object due to external factors such as friction or air resistance.