The light energy is absorbed and dispersed after it hits the radiometer.
In a radiometer, light energy is absorbed by the vanes, causing them to heat up. This creates a temperature difference between the inside and outside of the vanes, leading to a pressure difference that causes them to spin. Absorption of light energy is crucial for the radiometer to convert light into mechanical energy and demonstrate its functionality.
A radiometer is powered by light energy. When light is absorbed by the vanes of the radiometer, it creates a temperature difference that causes the vanes to rotate. This rotation is a demonstration of the conversion of light energy into mechanical energy.
In a radiometer, light energy is converted into kinetic energy. When light is absorbed by the dark side of the vanes, it causes the molecules inside to heat up and move faster, resulting in the rotation of the vanes.
When a light wave is absorbed by an object, the absorbed light energy is converted into heat or other forms of energy within the object.
In a radiometer, light energy is converted into rotational kinetic energy. The light causes the vanes inside the radiometer to spin due to the pressure exerted by the photons on the reflective surfaces of the vanes.
In a radiometer, light energy is absorbed by the vanes, causing them to heat up. This creates a temperature difference between the inside and outside of the vanes, leading to a pressure difference that causes them to spin. Absorption of light energy is crucial for the radiometer to convert light into mechanical energy and demonstrate its functionality.
A radiometer is powered by light energy. When light is absorbed by the vanes of the radiometer, it creates a temperature difference that causes the vanes to rotate. This rotation is a demonstration of the conversion of light energy into mechanical energy.
In a radiometer, light energy is converted into kinetic energy. When light is absorbed by the dark side of the vanes, it causes the molecules inside to heat up and move faster, resulting in the rotation of the vanes.
When a light wave is absorbed by an object, the absorbed light energy is converted into heat or other forms of energy within the object.
A radiometer
In a radiometer, light energy is converted into rotational kinetic energy. The light causes the vanes inside the radiometer to spin due to the pressure exerted by the photons on the reflective surfaces of the vanes.
Light energy that is not absorbed by a material is typically reflected, transmitted, or scattered.
I don know
they are absorbed
When light energy is not absorbed, it can be reflected, refracted, or transmitted. Reflection occurs when light bounces off a surface, while refraction happens when light passes through a medium and changes speed. Transmission involves light passing through a material without being absorbed.
If the light can not pass through a object it is opaque . The light will reflect or be absorbed by the object.
When light is absorbed by objects, it can turn into heat energy. This is because the absorbed light causes the atoms in the object to vibrate, which generates heat as a form of energy.