As an object moves closer to a concave lens, the virtual image, that is created on the same side of the lens as the object, will remain upright but will be reduced in size.
The object distance of a convex lens is measured from the optical center to the object, while for a concave lens, it is measured from the optical center to the object along the path of light. In general, the object distance for a convex lens is positive, while for a concave lens, it is negative since the object distances are measured on the opposite sides of the lens.
If the object is moved closer to a convex lens, the image distance will decrease and the image will move closer to the lens. The image size may increase depending on the object distance and object size relative to the focal length of the lens.
When an object is placed closer to a convex lens, the image that is formed will be farther away from the lens than the object is. This is because the convex lens will refract the light rays in a way that causes them to converge at a point behind the lens, creating a real and magnified image.
A virtual image of an object through a concave lens is always upright, reduced in size, and appears on the same side of the lens as the object. Its location depends on the distance of the object from the lens and the focal length of the lens.
No, a concave lens can produce both real and virtual images depending on the object location relative to the lens. If the object is located within the focal point of the concave lens, a virtual image will be produced. If the object is located beyond the focal point, a real image will be formed.
No, the closer an object is to the lens, the more the spherical it is.
The object distance of a convex lens is measured from the optical center to the object, while for a concave lens, it is measured from the optical center to the object along the path of light. In general, the object distance for a convex lens is positive, while for a concave lens, it is negative since the object distances are measured on the opposite sides of the lens.
it gets blurred
Convex lens produces both real and virtual images. But concave lens produces only virtual images for real objects. If object is virtual then real image could be produced by a concave lens.
If the object is moved closer to a convex lens, the image distance will decrease and the image will move closer to the lens. The image size may increase depending on the object distance and object size relative to the focal length of the lens.
For forming a smaller image than the object using convex and concave lenses, you can place the object closer to the convex lens than its focal length, then position a concave lens closer to the convex lens than the sum of their focal lengths. This arrangement will produce a smaller inverted image. Adjustments can be made by changing the distances between the lenses to fine-tune the size and position of the image.
When an object is placed closer to a convex lens, the image that is formed will be farther away from the lens than the object is. This is because the convex lens will refract the light rays in a way that causes them to converge at a point behind the lens, creating a real and magnified image.
A virtual image of an object through a concave lens is always upright, reduced in size, and appears on the same side of the lens as the object. Its location depends on the distance of the object from the lens and the focal length of the lens.
No, a concave lens can produce both real and virtual images depending on the object location relative to the lens. If the object is located within the focal point of the concave lens, a virtual image will be produced. If the object is located beyond the focal point, a real image will be formed.
An object seen through a concave lens will appear smaller, upright, and virtual - meaning it will not project a real image on a screen. The image will be on the same side as the object and its characteristics will depend on the distance of the object from the lens.
You would use a convex lens.
As an object moves closer to a convex lens, the size of the image increases. The orientation of the image remains the same, which means it is still upright if the object is upright and inverted if the object is inverted.