In the case of an object thrown, batted, teed off, or dropped, its acceleration
at the instant of its maximum velocity is 9.8 meters per second2 downward.
The direction of instantaneous acceleration is in the direction of the change in velocity at that moment. If the velocity is increasing, the acceleration is in the same direction as the velocity. If the velocity is decreasing, the acceleration is in the opposite direction of the velocity.
Instantaneous acceleration is the rate of change of velocity at a specific moment in time. It indicates how quickly the velocity of an object is changing at that instant. It is typically calculated as the derivative of velocity with respect to time.
the velocity increases at a constant rate
If the average acceleration is zero, it means that the object's velocity is not changing over time. Since instantaneous acceleration is the acceleration at a specific moment in time, it can still have a non-zero value depending on the instantaneous velocity of the object at that moment.
Instantaneous velocity is the rate at which an object is moving in a uniform direction, distance per unit time, at any given instant in time. instantaneous acceleration is the rate at which an object's velocity is changing at any given instant in time
no.
The direction of instantaneous acceleration is in the direction of the change in velocity at that moment. If the velocity is increasing, the acceleration is in the same direction as the velocity. If the velocity is decreasing, the acceleration is in the opposite direction of the velocity.
Instantaneous acceleration is the rate of change of velocity at a specific moment in time. It indicates how quickly the velocity of an object is changing at that instant. It is typically calculated as the derivative of velocity with respect to time.
the velocity increases at a constant rate
If the average acceleration is zero, it means that the object's velocity is not changing over time. Since instantaneous acceleration is the acceleration at a specific moment in time, it can still have a non-zero value depending on the instantaneous velocity of the object at that moment.
if under uniform acceleration or deceleration v = u + (a*t) where: v = instantaneous velocity u = initial velocity a = acceleration (negative if decelerating) t = time elapsed
Instantaneous velocity is the rate at which an object is moving in a uniform direction, distance per unit time, at any given instant in time. instantaneous acceleration is the rate at which an object's velocity is changing at any given instant in time
you are still. motion is at rest.
To find the instantaneous angular acceleration, you need to know the time rate of change of the instantaneous angular velocity. Without this information, you cannot calculate the instantaneous angular acceleration at t=5.0s.
To find the instantaneous acceleration of a particle, you would need to know the rate of change of its velocity at that specific moment in time. This can be calculated using calculus by taking the derivative of the velocity function with respect to time. The instantaneous acceleration provides information about how the velocity of the particle is changing at that precise instant.
The instantaneous acceleration of the particle is equal to 0 when the velocity of the particle is at a maximum or minimum. This occurs at the points on the graph where the slope of the velocity-time graph is horizontal or the velocity reaches a peak or trough.
The formula for instantaneous acceleration is given by the derivative of velocity with respect to time: a(t) = dv(t) / dt, where a(t) is the acceleration at time t and v(t) is the velocity at time t.