In a complex circuit with various elements (resistors, capacitors etc.) and one battery, the various circut elements contribute to draw a certain amount of current "I"from the battery at some terminal voltage "V". The "equivalent" resistance of the various circuit elements is that resistance "R" which will draw the same current , at the same terminal voltage, as the complex circuit. So to find "R" you simply imagine replacing the complex circuit with "R" by attaching "R" across the terminals of the battery and use Ohms law to find "R" , demanding "I" and "V" are the same. So then R = V/I.
To calculate the potential difference between two points in a circuit, you can use Ohm's Law, which states that voltage (V) equals current (I) multiplied by resistance (R). The formula is V I x R. By knowing the current flowing through the circuit and the resistance between the two points, you can calculate the potential difference.
To determine the potential difference in a circuit, you can use Ohm's Law, which states that voltage (V) equals current (I) multiplied by resistance (R). By measuring the current flowing through the circuit and knowing the resistance of the components, you can calculate the potential difference.
Potential difference is directly proportional to resistance according to Ohm's Law. This means that as resistance increases, the potential difference across a component also increases, assuming the current remains constant.
To find the potential difference across a resistor in an electric circuit, you can use Ohm's Law, which states that voltage (V) equals current (I) multiplied by resistance (R). So, you can calculate the potential difference by multiplying the current flowing through the resistor by the resistance value of the resistor.
To calculate the potential difference across a capacitor, you can use the formula V Q/C, where V is the potential difference, Q is the charge stored on the capacitor, and C is the capacitance of the capacitor.
I don't no
To calculate the potential difference between two points in a circuit, you can use Ohm's Law, which states that voltage (V) equals current (I) multiplied by resistance (R). The formula is V I x R. By knowing the current flowing through the circuit and the resistance between the two points, you can calculate the potential difference.
To determine the potential difference in a circuit, you can use Ohm's Law, which states that voltage (V) equals current (I) multiplied by resistance (R). By measuring the current flowing through the circuit and knowing the resistance of the components, you can calculate the potential difference.
Potential difference is directly proportional to resistance according to Ohm's Law. This means that as resistance increases, the potential difference across a component also increases, assuming the current remains constant.
To find the potential difference across a resistor in an electric circuit, you can use Ohm's Law, which states that voltage (V) equals current (I) multiplied by resistance (R). So, you can calculate the potential difference by multiplying the current flowing through the resistor by the resistance value of the resistor.
Changing the potential difference in a circuit does not change the resistance. Rather, it changes the current.
You can apply a potential difference across a wire to cause a current to flow through. Ohm's Law allows you to calculate the amount of current based on the voltage supplied and the resistance of the circuit. I = current V = voltage or potential difference R = resistance I = V/R
Voltage = Current x Resistance giving us Current = Voltage / Resistance i.e. Voltage divided by resistance
Resistance (Ohms) = Potential Difference (Voltage) / Current (Amps)
Current is proportional to the potential difference and inversely proportional to resistance. Ohm's law: Current equals voltage divided by resistance
You can measure it, but you can't calculate it. That's why the resistance of a resistor is always printed on it, either in numbers or in color bands. Without that marking, the resistor is pretty useless. If it accidentally missed being marked during manufacture, it would be either discarded, or sold surplus for bubkes.
To calculate the potential difference across a capacitor, you can use the formula V Q/C, where V is the potential difference, Q is the charge stored on the capacitor, and C is the capacitance of the capacitor.