Scalar Force f = ma =mrw2 gives w2 = f/rm.
The scalar force can be electrical f= ne2zc/2r2 or gravitational f= mGM/r2.
The mass of a pendulum does not affect its period of oscillation. The period of a pendulum is determined by its length and the acceleration due to gravity. This means that pendulums with different masses but the same length will have the same period of oscillation.
A two spring-mass system consists of two masses connected by springs. The characteristics of this system include the stiffness of the springs, the masses of the objects, and the initial conditions. These characteristics affect the overall dynamics by determining the natural frequency of the system, the amplitude of oscillation, and the energy transfer between the masses. The stiffness of the springs and the masses determine how quickly the system oscillates and how much energy is stored and transferred between the masses.
The force of gravity between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. This means that increasing the distance between two objects decreases the force of gravity acting between them, while increasing the masses of the objects increases the force of gravity.
Yes, according to Newton's law of universal gravitation, the ratio of the distances between two masses is equal to the ratio of the masses. This relationship holds true for gravitational forces acting between any two objects.
The force of gravity between two objects is directly proportional to the product of their masses. The distance between the objects also affects the force of gravity, as it decreases as the distance between the objects increases. So, the force of gravity is stronger with larger masses and closer distances, and weaker with smaller masses and farther distances.
daltons law!
Their masses are not the same.
Their masses are not the same.
The mass of a pendulum does not affect its period of oscillation. The period of a pendulum is determined by its length and the acceleration due to gravity. This means that pendulums with different masses but the same length will have the same period of oscillation.
The relationship between the molar mass of a gas and its density is that as the molar mass of a gas increases, its density also increases. This means that gases with higher molar masses will be denser than gases with lower molar masses.
A two spring-mass system consists of two masses connected by springs. The characteristics of this system include the stiffness of the springs, the masses of the objects, and the initial conditions. These characteristics affect the overall dynamics by determining the natural frequency of the system, the amplitude of oscillation, and the energy transfer between the masses. The stiffness of the springs and the masses determine how quickly the system oscillates and how much energy is stored and transferred between the masses.
The force of gravity between two objects is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. This means that increasing the distance between two objects decreases the force of gravity acting between them, while increasing the masses of the objects increases the force of gravity.
Yes, according to Newton's law of universal gravitation, the ratio of the distances between two masses is equal to the ratio of the masses. This relationship holds true for gravitational forces acting between any two objects.
The relationship between mole fraction and mass fraction in a mixture is that the mole fraction of a component is equal to its mass fraction divided by its molar mass, multiplied by the total mass of the mixture. This relationship helps in understanding the proportion of each component in the mixture based on their masses and molar masses.
The force of gravity between two objects is directly proportional to the product of their masses. The distance between the objects also affects the force of gravity, as it decreases as the distance between the objects increases. So, the force of gravity is stronger with larger masses and closer distances, and weaker with smaller masses and farther distances.
Newton's law of gravitation doesn't really "explain" the relationship, it just states it. On the other hand, the General Theory of Relativity explains that masses distort space-time; this, in turn, affects the movement of other masses.
The gravitational force between two heavenly bodies is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. This relationship is described by Newton's law of universal gravitation.