I DONT KNOW this website is so stupid it helps with nothing
The inclination of the plane affects the effective force required to move an object up the plane, thus affecting the effort force in the calculation of the IMA. The AMA takes into account friction, which is typically present when moving an object on an inclined plane, resulting in a lower AMA compared to the IMA of the same inclined plane.
To calculate the mechanical advantage (MA) of an inclined plane, you can use the formula MA = L / H, where L is the length of the inclined plane and H is the height of the inclined plane. This formula is based on the principle that the force required to lift an object up the inclined plane is less than the force required to lift it vertically.
In an inclined plane, the mechanical advantage (MA) is always less than 1 because the input force needed to lift an object is greater than the output force. This is due to the trade-off between the distance over which the force is applied (input distance) and the vertical distance the object is lifted (output distance). The ideal mechanical advantage (IMA) assumes a frictionless system and is calculated based on the ratio of input distance to output distance, resulting in a value always greater than the AMA.
Ima is Ideal Mechanical Advantage and Ama is Actual Mechanical Advantage. The difference is that IMA doesn't take into account elasticity or friction and AMA does.
In a circuit with reactive components such as inductors or capacitors, the current waveform may lead (I) or lag (AMA) behind the voltage waveform due to phase differences caused by the reactive nature of the components. The difference in phase shift leads to a difference in magnitude between the two waveforms, making IMA larger than AMA.
The inclination of the plane affects the effective force required to move an object up the plane, thus affecting the effort force in the calculation of the IMA. The AMA takes into account friction, which is typically present when moving an object on an inclined plane, resulting in a lower AMA compared to the IMA of the same inclined plane.
To calculate the mechanical advantage (MA) of an inclined plane, you can use the formula MA = L / H, where L is the length of the inclined plane and H is the height of the inclined plane. This formula is based on the principle that the force required to lift an object up the inclined plane is less than the force required to lift it vertically.
answering "What is the Difference between kotler's marketing definition and AMA marketing definition?"
In an inclined plane, the mechanical advantage (MA) is always less than 1 because the input force needed to lift an object is greater than the output force. This is due to the trade-off between the distance over which the force is applied (input distance) and the vertical distance the object is lifted (output distance). The ideal mechanical advantage (IMA) assumes a frictionless system and is calculated based on the ratio of input distance to output distance, resulting in a value always greater than the AMA.
Ima is Ideal Mechanical Advantage and Ama is Actual Mechanical Advantage. The difference is that IMA doesn't take into account elasticity or friction and AMA does.
In a circuit with reactive components such as inductors or capacitors, the current waveform may lead (I) or lag (AMA) behind the voltage waveform due to phase differences caused by the reactive nature of the components. The difference in phase shift leads to a difference in magnitude between the two waveforms, making IMA larger than AMA.
unfortunately no. i don't think they will be attending either since Harry Styles boarded a plane back to the UK earlier this week.
what ama are u talking about karate?
he was on the 2010 and 2011 ama's
do you have an example of the AMA outline
Panama ends in -ama.
Do you love me in Latin is ama me.