I dont know why did you think i ask wiki answers duhhh.................
* emisssion of electron from the surface of the metal when light of suitable frequency falls-photoelectric emission. * emision of electron from the metal by quantum tunnling of electron.
Electron capture and beta decay are both processes by which an atom can undergo nuclear transformation. In electron capture, an inner electron is absorbed by the nucleus, causing a proton to convert into a neutron. This results in the emission of a neutrino. In beta decay, a neutron in the nucleus is converted into a proton, releasing a beta particle (electron) and an antineutrino. The key difference is that electron capture involves the absorption of an electron, while beta decay involves the emission of an electron.
When an electron jumps from one energy level to another, it either absorbs or emits energy in the form of a photon. This process is called an electron transition and is responsible for the emission or absorption of light in atoms. The difference in energy between the initial and final energy levels determines the wavelength of the emitted or absorbed light.
The energy required to move an electron from the n=3 to n=2 state in hydrogen is approximately 10.2 eV (electron volts). This energy corresponds to the difference in energy levels between the two states and is typically provided in the form of a photon during absorption or emission processes.
Compton scattering involves the collision of a photon with an electron, resulting in the photon losing energy and changing direction. The photoelectric effect, on the other hand, involves the absorption of a photon by an electron, causing the electron to be ejected from the material. In summary, Compton scattering involves the photon changing direction and losing energy, while the photoelectric effect involves the absorption of the photon by an electron.
Absorption spectrum is a gap in the overall spectrum. It happen when light makes an electron jump to a higher orbital and light energy is absorbed. Emission spectrum is light emitted at particular wavelengths (where the absorption spectrum gaps are). It happens when an electron falls from a higher orbital and emits light energy in doing so.
* emisssion of electron from the surface of the metal when light of suitable frequency falls-photoelectric emission. * emision of electron from the metal by quantum tunnling of electron.
Emission is the process where an object releases energy (such as light) while absorption is the process where an object takes in energy (such as light). In emission, energy is being emitted from the object, whereas in absorption, energy is being absorbed by the object.
Electron capture and beta decay are both processes by which an atom can undergo nuclear transformation. In electron capture, an inner electron is absorbed by the nucleus, causing a proton to convert into a neutron. This results in the emission of a neutrino. In beta decay, a neutron in the nucleus is converted into a proton, releasing a beta particle (electron) and an antineutrino. The key difference is that electron capture involves the absorption of an electron, while beta decay involves the emission of an electron.
Electronics is a science dealing with electrons emission electrical is a science dealing with electron flow
The lines are at the same frequencies
When an electron jumps from one energy level to another, it either absorbs or emits energy in the form of a photon. This process is called an electron transition and is responsible for the emission or absorption of light in atoms. The difference in energy between the initial and final energy levels determines the wavelength of the emitted or absorbed light.
The absorption spectrum of an element features lines at the same wavelengths as its emission spectrum because both processes involve the same energy transitions between electron energy levels. When an electron absorbs energy, it moves to a higher energy level, resulting in the absorption of specific wavelengths of light. Conversely, when an electron falls back to a lower energy level, it releases energy in the form of light at those same wavelengths. This correspondence between absorbed and emitted wavelengths is a fundamental characteristic of atomic structure.
The electric dipole transition refers to the dominant?æeffect of the atom's electron interaction in the electromagnetic field. It is also the transition between the system energy levels with?æthe Hamiltonian.
The energy required to move an electron from the n=3 to n=2 state in hydrogen is approximately 10.2 eV (electron volts). This energy corresponds to the difference in energy levels between the two states and is typically provided in the form of a photon during absorption or emission processes.
Emission spectrum: lines emitted from an atom.Absorption spectrum: absorbed wavelengths of a molecule.
This process is called "emission." When an electron transitions from a higher to a lower energy level within an atom, it releases a photon of light corresponding to the energy difference between the two levels. This emitted photon carries away the energy that the electron lost during the transition.