I think torsional strain happens only when two groups are eclipsed in relation to their positions to each other. This strain can be relieved by rotation about the carbon carbon bond.
But steric strain can happen all the time. (when two groups are eclipsed, gauge or staggered in relation to each other.)
Strain energy due to torsion is the energy stored in a material when it is twisted under a torque load. It is calculated as the integral of shear stress and strain over the volume of the material. This energy represents the ability of the material to deform plastically under torsional loading.
The normal strain is a deformation caused by normal forces such as Tension or Compression that act perpendicular to the cross-sectional area, while the shear strain is a deformation obtained from forces acting parallel or tangential to the cross-sectional area.
Young's modulus and elastic modulus are often used interchangeably, but there is a subtle difference between the two. Young's modulus specifically refers to the ratio of stress to strain in the elastic region of a material's stress-strain curve, while elastic modulus is a more general term that can refer to any modulus of elasticity that describes a material's ability to deform elastically under stress.
Strain gage and Extensometer both are same purpose to check the stress and strain in selective test pieces, but traditional they were using strain gage its take the preparation time is high and Extensometer we are check the directly both results are same.
According to Hooke's Law, the relationship between stress and strain is linear. This means that the amount of stress applied to a material is directly proportional to the resulting strain it experiences. In other words, as stress increases, strain also increases in a predictable and proportional manner.
Torsional strain is caused by the repulsion between atoms in a molecule due to their bond angles, while steric strain is caused by the repulsion between bulky groups on adjacent atoms. Torsional strain affects the rotation of bonds in a molecule, while steric strain affects the overall shape and stability of the molecule. Both strains can impact the conformation and stability of a molecule, but in different ways.
Steric strain and torsional strain are both types of strain that can occur in organic molecules. Steric strain is caused by repulsion between bulky groups on adjacent atoms, while torsional strain is caused by the resistance to rotation around a bond due to the presence of bulky groups. These two types of strain are related because they both result from the presence of bulky groups in a molecule, and they can both contribute to the overall instability of the molecule.
Torsional strain and steric hindrance both affect the shape and reactivity of molecules, but in different ways. Torsional strain is caused by the resistance to rotation around a bond, leading to a twisted conformation. This strain can affect the stability and reactivity of a molecule. On the other hand, steric hindrance is caused by bulky groups that physically block the movement of other groups, affecting the shape and reactivity of the molecule. In summary, torsional strain is due to bond rotation, while steric hindrance is due to bulky groups blocking movement.
Steric strain is caused by repulsion between atoms or groups that are too close together, leading to distortion of the molecule's shape. Torsional strain, on the other hand, is caused by resistance to rotation around a bond, which can also distort the molecule's shape. Both types of strain can affect molecular conformation and stability by increasing energy levels and making the molecule less stable.
Torsional strain is caused by the resistance to rotation around a bond, leading to higher energy and less stability in a molecule's conformation. Steric strain is caused by repulsion between bulky groups, also resulting in higher energy and less stability. Both strains affect molecular conformation and stability by distorting the molecule's shape and increasing its energy.
Steric strain in organic chemistry refers to the repulsion between atoms or groups of atoms that are too close together. This strain can affect the conformation of molecules by causing them to adopt certain shapes or conformations that minimize this repulsion. In other words, steric strain influences the spatial arrangement of atoms in a molecule, leading to specific shapes and structures.
Torsional strain is the resistance to twisting in a molecule's structure, caused by the repulsion between atoms or groups that are forced too close together. This strain can lead to instability in molecules, affecting their overall stability and potentially influencing their reactivity and properties.
Van der Waals strain is one example
"Torsional strain" is the strain induced by applying torque. Basically, it is the strain imposed on a body by twisting it. (Such as the strain that a bolt endures when you use a wrench on it.)
Torsional strain occurs when atoms in a molecule are forced to adopt unfavorable positions due to repulsion between electron clouds. This strain can destabilize the molecule's conformation by increasing its energy. In turn, this can lead to a less stable and less favorable molecular structure.
When ever you cross a bridge torsional strain is at work, the engineers utilized it to determine the payload of each bridge and your car creates torsional strain on the bridges members.
It is what prevents DNA from torsional strain or winding up tightly.