4.44 10-19 j
Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.
The energy of a photon can be calculated using the equation E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength. Plugging in the values, the energy of a photon with a wavelength of 518 nm is approximately 3.82 eV.
The energy of a photon with a wavelength of 500 nm is approximately 2.48 keV.
The frequency of a photon with a wavelength of 488.3 nm is approximately 6.15 x 10^14 Hz. The energy of this photon is approximately 2.54 eV.
Photon energy is proportional to frequency ==> inversely proportional to wavelength.3 times the energy ==> 1/3 times the wavelength = 779/3 = 2592/3 nm
3.84 x 10-19 joules.
Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.
The energy of a photon can be calculated using the equation E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength. Plugging in the values, the energy of a photon with a wavelength of 518 nm is approximately 3.82 eV.
The energy of a photon with a wavelength of 500 nm is approximately 2.48 keV.
The energy of the electron decreased as it moved to a lower energy state, emitting a photon with a wavelength of 550 nm. This decrease in energy corresponds to the difference in energy levels between the initial and final states of the electron transition. The energy of the photon is inversely proportional to its wavelength, so a longer wavelength photon corresponds to lower energy.
The frequency of a photon with a wavelength of 488.3 nm is approximately 6.15 x 10^14 Hz. The energy of this photon is approximately 2.54 eV.
Photon energy is proportional to frequency ==> inversely proportional to wavelength.3 times the energy ==> 1/3 times the wavelength = 779/3 = 2592/3 nm
The energy of a photon can be calculated using the equation E = hc/λ, where E is the energy of the photon, h is Planck's constant (6.626 x 10^-34 J*s), c is the speed of light (3.0 x 10^8 m/s), and λ is the wavelength of the photon. Plugging in the values, the energy of a photon emitted with a wavelength of 654 nm (or 6.54 x 10^-7 m) is approximately 3.02 x 10^-19 J.
The energy of a photon can be calculated using the equation E = hc/λ, where E is the energy, h is Planck's constant (6.626 x 10^-34 J s), c is the speed of light (3 x 10^8 m/s), and λ is the wavelength. Plugging in the values given, the energy of a photon emitted with a wavelength of 1 nm is approximately 2 x 10^-16 J.
Transition B produces light with half the wavelength of Transition A, so the wavelength is 200 nm. This is due to the inverse relationship between energy and wavelength in the electromagnetic spectrum.
610 nm
The energy of a photon can be calculated using the equation E = hf, where h is Planck's constant (6.626 x 10^-34 J·s) and f is the frequency of the photon. To find the frequency from the given wavelength (654 nm), you can use the equation c = λf, where c is the speed of light (3.00 x 10^8 m/s). Once you have calculated the frequency, you can then use it to find the energy of the photon.