answersLogoWhite

0

The energy of a photon can be calculated using the equation E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength of the light. Plugging in the values for h, c, and λ, the energy of a photon of blue light with a wavelength of 475 nm is approximately 4.16 x 10^-19 joules.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


Which has more energy a photon of red light or photon of violet light?

The violet light has more energy than the red light. Red light is lower on the electromagnetic spectrum, meaning it has a lower frequency (or longer wavelength). You'll recall the colors of the rainbow as red, orange, yellow, etc., and these are the colors going up the frequency spectrum. Photons higher on the spectrum are higher in frequency and energy.


Which had the lower energy quanta red light or blue light?

Light of is made up of a finite number of photons, or light quanta. The energy of each photon is proportional to the frequency of the light, and hence inversely proportional to the wavelength of the light. Red light has a longer wavelength than blue light, so the quantum of red light has less energy than the quantum of blue light.


Which photon has the greatest energy?

All particles which represents a quantum of light and other electromagnetic radiation is called photon. The photons with the highest energies are gamma or X-rays, UV light, Blue light, and radio waves.


What color of light has the greatest amount of energy?

Blue light has the greatest amount of energy among visible light. It has a shorter wavelength and higher frequency compared to other colors, which translates to higher energy per photon.

Related Questions

Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


What is the difference between the red and blue colors of light?

Wavelength Frequency and Photon Energy


How does the energy of three photons of blue light compare with that of one photon of blue light from the same source?

If the color (frequency, wavelength) of each is the same, then each photon carries the same amount of energy. Three of them carry three times the energy that one of them carries.


Which has more energy a photon of red light or photon of violet light?

The violet light has more energy than the red light. Red light is lower on the electromagnetic spectrum, meaning it has a lower frequency (or longer wavelength). You'll recall the colors of the rainbow as red, orange, yellow, etc., and these are the colors going up the frequency spectrum. Photons higher on the spectrum are higher in frequency and energy.


Which had the lower energy quanta red light or blue light?

Light of is made up of a finite number of photons, or light quanta. The energy of each photon is proportional to the frequency of the light, and hence inversely proportional to the wavelength of the light. Red light has a longer wavelength than blue light, so the quantum of red light has less energy than the quantum of blue light.


What color is visible light sprectrum has the most energy per photon?

A photon's energy is directly proportional to its frequency (inversely proportional to its wavelength).In any given interval of the spectrum, the highest frequency (shortest wavelength) carries the most energy.For visible light, that corresponds to the violet end of the 'rainbow'. The last color your eyes can perceiveat that end is the color with the most energy per photon.


How does blue light compare with ultraviolet light?

The blue light has longer wavelength, lower frequency, andless energy per photon than the ultraviolet light has.The blue light is also visible to the human eyes, whereas theultraviolet light is not.


Which photon has the greatest energy?

All particles which represents a quantum of light and other electromagnetic radiation is called photon. The photons with the highest energies are gamma or X-rays, UV light, Blue light, and radio waves.


What color of light has the greatest amount of energy?

Blue light has the greatest amount of energy among visible light. It has a shorter wavelength and higher frequency compared to other colors, which translates to higher energy per photon.


What is the energy of 1 mol of blue photons at 400 nm wavelength?

The energy of a photon can be calculated using the equation E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength of the photon. Plugging in the values for h, c, and λ, we can calculate the energy of one photon at 400 nm. To find the energy of 1 mol of photons, we would multiply the energy of one photon by Avogadro's number.


What is the energy of a photon of blue light with a wavelength of 455 NM?

The energy of a photon is calculated using the formula E = hc/λ, where h is Planck's constant (6.626 x 10^-34 J s), c is the speed of light (3.00 x 10^8 m/s), and λ is the wavelength of the light in meters. Plugging in the values for blue light with a wavelength of 455 nm (455 x 10^-9 m) gives an energy of approximately 4.37 x 10^-19 Joules.


What is the relationship between the light bulb wavelength and its energy efficiency?

The relationship between the wavelength of light emitted by a light bulb and its energy efficiency is that shorter wavelengths, such as blue light, are more energy efficient than longer wavelengths, such as red light. This is because shorter wavelengths carry more energy per photon, allowing for more efficient conversion of electricity into light.