The energy of one photon of violet light is around 3.1 electronvolts (eV) or equivalently about 500 kilojoules per mole (kJ/mol). Violet light has a shorter wavelength and higher frequency compared to other visible light colors, resulting in higher energy photons.
The energy of one photon in yellow light depends on the specific shade of yellow, as it corresponds to a range of wavelengths. Generally, for yellow light with a wavelength around 580 nanometers, the energy of one photon is approximately 2.14 electronvolts.
No, it could not. A blue photon carries more energy than a red photon, since the blue photon's frequency is higher. That means one red photon wouldn't deliver enough energy to the atom to give it the energy to emit a blue photon.
The energy of one photon is directly proportional to its frequency. This relationship is described by Planck's equation: E hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. The behavior of light, including its interactions with matter and its wave-particle duality, is influenced by the energy of its constituent photons.
The energy of one photon of light with a wavelength of 445nm is about 2.79 electronvolts. This can be calculated using the equation E = hc/λ, where h is the Planck constant, c is the speed of light, and λ is the wavelength.
Photon energy can be increased by following two methods. 1). by increase in frequency of one photon as (E = hf); where f denotes the frequency of corresponding region. In this case, the electromagnetic region will change to higher frequency region or shorter wavelength region. The photon energy may increase, but not the intensity. 2). secondly increase in the number of photons (n) as E= nhf. If the number of photons of a particular frequency increase, photon energy also increases. In this case, intensity of light of definite frequency (either blue, red etc.) increase simultaneously.
This is a tricky question because there is more than one form of energy in light. There is the energy that each particle of light (the photon) has and there is group energy which is the sum total of all the photon energy as they travel as a group (like in a laser beam). But the good news is that the answer is FALSE for both the photon and group energies. Photon energy depends on the photon fundamental frequency. And the higher the energy the bluer the color, which can run from red to violet. Those photons in the violet color have higher energy than photons in the red color frequency. And group energy is just the sum of all the photon energies in a group, like a light beam from your flashlight (aka, torch). So for a given mix of photons, the more photons in the group the higher is the group energy level. What we call light intensity (e.g., bright or dim) depends on the group energy with high energy equating to high intensity.
The energy of one photon in yellow light depends on the specific shade of yellow, as it corresponds to a range of wavelengths. Generally, for yellow light with a wavelength around 580 nanometers, the energy of one photon is approximately 2.14 electronvolts.
If the color (frequency, wavelength) of each is the same, then each photon carries the same amount of energy. Three of them carry three times the energy that one of them carries.
No, it could not. A blue photon carries more energy than a red photon, since the blue photon's frequency is higher. That means one red photon wouldn't deliver enough energy to the atom to give it the energy to emit a blue photon.
The energy of one photon is directly proportional to its frequency. This relationship is described by Planck's equation: E hf, where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. The behavior of light, including its interactions with matter and its wave-particle duality, is influenced by the energy of its constituent photons.
The energy of one photon of light with a wavelength of 445nm is about 2.79 electronvolts. This can be calculated using the equation E = hc/λ, where h is the Planck constant, c is the speed of light, and λ is the wavelength.
Photon energy can be increased by following two methods. 1). by increase in frequency of one photon as (E = hf); where f denotes the frequency of corresponding region. In this case, the electromagnetic region will change to higher frequency region or shorter wavelength region. The photon energy may increase, but not the intensity. 2). secondly increase in the number of photons (n) as E= nhf. If the number of photons of a particular frequency increase, photon energy also increases. In this case, intensity of light of definite frequency (either blue, red etc.) increase simultaneously.
A photon is a fundamental particle of light that carries electromagnetic radiation. It has no mass, travels at the speed of light, and interacts with matter through processes like absorption and emission. An example of a photon is the particles of light emitted by the sun.
When an electron transitions from a higher energy level to a lower one, it releases energy in the form of a photon of light. This photon has a specific wavelength and color determined by the energy difference between the two levels. This process is known as emission of light by electrons.
I am not sure how much of a proof this is; but light energy is involved both in conservation of energy, and in conservation of momentum. A photon has both energy and momentum.I am not sure how much of a proof this is; but light energy is involved both in conservation of energy, and in conservation of momentum. A photon has both energy and momentum.I am not sure how much of a proof this is; but light energy is involved both in conservation of energy, and in conservation of momentum. A photon has both energy and momentum.I am not sure how much of a proof this is; but light energy is involved both in conservation of energy, and in conservation of momentum. A photon has both energy and momentum.
If the photon is having very less frequency (say v=1Hz) ,then the Energy of such photon will be the smallest one. It can be inferred that the smallest unit of light energy will correspond to the smallest frequency of such quanta. But from the uncertainty principle it limits the energy of a quanta.
A Photon does not have any mass. It is merely a packet of energy. To calculate the energy of a photon, the formula is E = hνwhere h = Planck's constant = 6.63 x 10-34and ν = frequency of the light source (in Hz)