answersLogoWhite

0

energy of one packet of light

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics

How many Joules in one photon?

The energy of one photon is given by E = hf, where h is Planck's constant (6.626 x 10^-34 J·s) and f is the frequency of the photon. For example, a photon of green light with a frequency of around 5.5 x 10^14 Hz has an energy of about 3.66 x 10^-19 Joules.


Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


What is the opposite of a photon?

The opposite of a photon is an antiphoton.


How do you calculate photon flux given v?

Photon flux can be calculated using the formula: photon flux = v * E, where v is the frequency of the photons and E is the energy of each photon. By multiplying the frequency of the photons by the energy of each photon, you can determine the photon flux.


What are the properties of a photon and how do they contribute to its behavior and interactions with matter?

Photons are fundamental particles of light with properties such as energy, momentum, and polarization. These properties determine how photons behave and interact with matter. For example, the energy of a photon determines its color and intensity, while its momentum affects how it transfers energy to matter. The polarization of a photon influences how it interacts with polarized materials. Overall, the properties of a photon play a crucial role in its behavior and interactions with matter.

Related Questions

What is an example of quanta?

photon


Is there any connection between the wave length and spin of a photon?

No, the spin of different particles is a constant in each case; for example the spin of a photon is always 1.


How many Joules in one photon?

The energy of one photon is given by E = hf, where h is Planck's constant (6.626 x 10^-34 J·s) and f is the frequency of the photon. For example, a photon of green light with a frequency of around 5.5 x 10^14 Hz has an energy of about 3.66 x 10^-19 Joules.


What does a quantum look like?

A 'quantum' is a very very very small, but discrete amount of something. For example a quantum of light is called a photon, you cannot get a smaller 'piece' of light than one photon.


The light bearing packet of energy emitted by an electron is called a?

A packet of light energy is called a photon.


Which is more energetic a red photon or a blue photon?

The energy of a photon is inversely propotional to its wavelength. The wavelength of a blue photon is less than that of a red photon. That makes the blue photon more energetic. Or how about this? The energy of a photon is directly proportional to its frequency. The frequency of a blue photon is greater than that of a red photon. That makes the blue photon more energetic. The wavelength of a photon is inversely proportional to its frequency. The the longer the wavelength, the lower the frequency. The shorter the wavelength, the higher the frequency.


What is the opposite of a photon?

The opposite of a photon is an antiphoton.


How do you calculate photon flux given v?

Photon flux can be calculated using the formula: photon flux = v * E, where v is the frequency of the photons and E is the energy of each photon. By multiplying the frequency of the photons by the energy of each photon, you can determine the photon flux.


What is the difference between tata photon whiz and tata photon plus?

tata photon plus is ratan tata and Javed Siddiqui is houner of PHoton whiz..............


What are the properties of a photon and how do they contribute to its behavior and interactions with matter?

Photons are fundamental particles of light with properties such as energy, momentum, and polarization. These properties determine how photons behave and interact with matter. For example, the energy of a photon determines its color and intensity, while its momentum affects how it transfers energy to matter. The polarization of a photon influences how it interacts with polarized materials. Overall, the properties of a photon play a crucial role in its behavior and interactions with matter.


What is a quantum of electromagnetic energy called?

. . . photon.


What is the correct term of a light particle?

Photon