-- If the 40 kilogram mass is on the Earth, you need about 392 newtons (88.2 pounds).
-- If the same mass is on the moon, you need about 64.9 newtons (14.6 pounds).
-- If it's inside a space ship with you and your ship is coasting, then you can
lift it with ANY force, no matter how large or small. In fact, after you lift it, you'll
need to apply force in the opposite direction in order to make it stop lifting.
If the mass of an object is greater than the force of lift, the object will not be able to overcome gravity and will not be able to lift off the ground. It is important for the force of lift to be greater than or equal to the mass of the object for it to be able to achieve lift.
The force required to lift an object is equal to the weight of the object, which is the mass of the object multiplied by the acceleration due to gravity (F = m * g). The force must overcome the gravitational force acting on the object in order to lift it.
To lift a 45 kg mass, you would need to apply a force equal to the gravitational force acting on the mass, which is approximately 441 Newtons (45 kg * 9.81 m/s^2). This force would need to be greater than the weight of the mass to overcome gravity and lift the object upward.
The force required to lift an object is equal to the weight of the object, which is determined by its mass and the acceleration due to gravity. This force can be calculated using the formula: Force = mass x acceleration due to gravity.
The force needed to lift a 400 g mass would be equal to the mass multiplied by the acceleration due to gravity. Using the formula F = m * g, where F is the force, m is the mass (in kg), and g is the acceleration due to gravity (approximately 9.81 m/s^2), the force required to lift the 400 g mass would be approximately 3.92 N.
If the mass of an object is greater than the force of lift, the object will not be able to overcome gravity and will not be able to lift off the ground. It is important for the force of lift to be greater than or equal to the mass of the object for it to be able to achieve lift.
The force required to lift an object is equal to the weight of the object, which is the mass of the object multiplied by the acceleration due to gravity (F = m * g). The force must overcome the gravitational force acting on the object in order to lift it.
A force larger than the weight of the mass.
To lift a 45 kg mass, you would need to apply a force equal to the gravitational force acting on the mass, which is approximately 441 Newtons (45 kg * 9.81 m/s^2). This force would need to be greater than the weight of the mass to overcome gravity and lift the object upward.
The force of gravity must be greater than the mass of the object
The force required to lift an object is equal to the weight of the object, which is determined by its mass and the acceleration due to gravity. This force can be calculated using the formula: Force = mass x acceleration due to gravity.
The force needed to lift a 400 g mass would be equal to the mass multiplied by the acceleration due to gravity. Using the formula F = m * g, where F is the force, m is the mass (in kg), and g is the acceleration due to gravity (approximately 9.81 m/s^2), the force required to lift the 400 g mass would be approximately 3.92 N.
If you have a man submerged up to his neck in corn and you want to know how many pounds of force it will take to lift him out, information about the volume, weight, mass, density would be needed in order to calculate the force needed.
The force needed to lift a 500 g mass would be equal to its weight, which is given by mass x acceleration due to gravity. Using Earth's gravity (9.81 m/s^2), the force required would be approximately 4.905 N.
If the lift force is greater than the mass of an object, the object will experience a net upward force causing it to accelerate upwards. This is the principle behind how airplanes and helicopters are able to fly.
The height is irrelevant. The energy required depends on the height; the force does not. The weight of an object, and therefore the force required to lift it, is mass x gravity - about 500 Newtons.The height is irrelevant. The energy required depends on the height; the force does not. The weight of an object, and therefore the force required to lift it, is mass x gravity - about 500 Newtons.The height is irrelevant. The energy required depends on the height; the force does not. The weight of an object, and therefore the force required to lift it, is mass x gravity - about 500 Newtons.The height is irrelevant. The energy required depends on the height; the force does not. The weight of an object, and therefore the force required to lift it, is mass x gravity - about 500 Newtons.
The force that acts in the opposite direction of lift is weight, which is the force exerted by gravity pulling the object downward. It acts vertically downward from the center of mass of the object.