There's no way to answer that, because it can be a different number in every situation.
It can never be greater than ' 1 ', but the actual number depends on how squiggly the
route is between the starting point and the ending point.
The numerical ratio of displacement to distance for a moving object is 1 when the object moves in a straight line in a single direction. This means that the displacement is equal to the distance traveled. If the object moves in a more complex path, the ratio may vary depending on the trajectory.
The modulus of the ratio of distance to displacement is always less than or equal to 1, as displacement is the shortest distance between two points. The unit for this ratio is dimensionless, as it is a pure number without units.
The ratio of distance to displacement is always equal to or greater than 1. This is because distance will always be equal to or greater than displacement, as distance is the total length of the path traveled while displacement is the difference between the final and initial positions.
There's no firm relationship between the magnitudes of distance and displacement, except that displacement can never be greater than distance. So if you're looking for a ratio, I guess (distance)/(displacement) = or > 1
The ratio of the distance covered to the displacement of a particle moved along a semi-circle of radius r is π. This is because the distance covered around the semi-circle is the circumference (2πr), while the displacement is the diameter of the circle (2r). The ratio is therefore (2πr) / (2r) = π.
The numerical ratio of displacement to distance for a moving object is 1 when the object moves in a straight line in a single direction. This means that the displacement is equal to the distance traveled. If the object moves in a more complex path, the ratio may vary depending on the trajectory.
The ratio is 1.
The modulus of the ratio of distance to displacement is always less than or equal to 1, as displacement is the shortest distance between two points. The unit for this ratio is dimensionless, as it is a pure number without units.
The ratio of distance to displacement is always equal to or greater than 1. This is because distance will always be equal to or greater than displacement, as distance is the total length of the path traveled while displacement is the difference between the final and initial positions.
There's no firm relationship between the magnitudes of distance and displacement, except that displacement can never be greater than distance. So if you're looking for a ratio, I guess (distance)/(displacement) = or > 1
The ratio of the distance covered to the displacement of a particle moved along a semi-circle of radius r is π. This is because the distance covered around the semi-circle is the circumference (2πr), while the displacement is the diameter of the circle (2r). The ratio is therefore (2πr) / (2r) = π.
After traversing 1/2 of a circular track with radius 'R', the body has effectively moved from one end of a diameter to the other end of the same diameter. The distance traveled is 1/2 the circumference = (pi)D/2 = (pi)R. The displacement is D = 2R. The ratio of displacement to distance = (2R)/(piR) = 2/pi= 0.63662 (rounded), independent of 'R'.
The technical answer is that displacement is the vector sum of the distances. An example to illustrate the difference in less technical terms, distance travelled in one direction added to the same distance in the opposite direction will result in the total distance being twice the distance of each leg but the total displacement is 0.
Example: There are 6 fish and 19 dogs. The numerical ratio of fish to dogs is 6/19 .
The ratio of the total displacement of an object to the total time taken is called the average velocity. It gives an overall measure of how fast the object is moving in a given direction over a certain period of time.
speed is the ratio of the distance an object moves per time unit (seconds,minutes hours)
These have to do with the hydraulic density. In automobile, the density increases therefore making the hydraulic ratio to displace more than any hydraulic ratio in a displacement.