answersLogoWhite

0

0.3v as opposed to the silicon 0.6v

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Physics

What is the value of the barrier potential for a germanium diode at different temperatures?

The barrier potential of a germanium diode typically decreases with increasing temperature due to the increase in intrinsic carrier concentration. At room temperature (around 300K), the barrier potential is usually around 0.3-0.4V for a germanium diode.


What is meant by 0.3 volts for germanium and 0.7 volts for silicon?

== When we make a semiconductor junction (a p-n junction), the electric fields force charges to shift creating what is called a depletion region. This depletion region forms a potential barrier across the junction. This potential barrier has a voltage associated with it, and that voltage is 0.3 volts (approximately) for germanium semiconductor material, and 0.7 volts (approximately) for silicon semiconductor. The terms we apply to this barrier potential are the built-in voltage (or potential), junction voltage (or potential), and contact potential. Use the link below to check facts and review some other closely related material.


What happens to the barrier potential when the temperature increases?

When the temperature increases, the barrier potential in a semiconductor diode decreases. This is due to the increase in carrier density at higher temperatures, which results in more charge carriers being available to pass through the barrier. Ultimately, this leads to a lower resistance across the diode and a decrease in the potential barrier.


What parameter in a germanium diode differs from those in a silicon diode?

A germanium diode has a lower forward voltage drop compared to a silicon diode, typically around 0.3V for germanium and 0.7V for silicon. Germanium diodes also have a higher reverse current leakage compared to silicon diodes.


What is the difference between a silicon diode and a germanium diode?

The silicon diode (unless its a Schottky diode) conducts at approximately 0.6 volts. The germanium diode, however, conducts at a much lower voltage, typically 0.2 volts. This means that the germanium diode is better at small signal rectification applications, such as AM radio detectors, allowing a smaller tuner tank circuit.

Related Questions

Compare the characteristics of a silicon and germanium diode?

Potential barrier of silicon is 0.7, whereas potential barrier of germanium is 0.3


What is the value of the barrier potential for a germanium diode at different temperatures?

The barrier potential of a germanium diode typically decreases with increasing temperature due to the increase in intrinsic carrier concentration. At room temperature (around 300K), the barrier potential is usually around 0.3-0.4V for a germanium diode.


What is the typical value of the barrier potential for a silicon diode?

Forward biase the given diode by using a Variable resistor in the circuit. By adjusting the value of variable resistor you will adjust the voltage being applied to junction diode. First adjust the resistance such that no(negligble) current flows through the circuit. Now start decreasing the value of resistance. Note the voltage across resistor(Vr) when current just starts flowing through the circuit. Then Potential barrier of diode will be: Vb=V-Vr Vb:Barrier Potential V:Battery Voltage Vr:Voltage Drop across resistance when current just starts flowing through the circuit.


What is a substitute for a germanium diode?

There is no exact substitute for a germanium diode, except another germanium diode. However if the only concern is to get a lower forward voltage drop than that of a silicon diode (0.7V), then a schottky barrier diode may be a suitable replacement as its forward voltage drop (<0.1V) is even lower than that of a germanium diode (0.2V).


Why can't the potential barrier of a diode be used as a voltage source?

The potential barrier of a diode is caused by the movement of electrons to create holes. The electrons and holes create a potential barrier, but as this voltage will not supply current, it cannot be used as a voltage source.


What is the cut in voltage of germanium and silicon diodes?

cut in voltage *** for silicon is 0.7volts and that for germanium is 0.3volts.According to Millman and Taub, "Pulse, Digital and Switching Waveforms", McGraw-Hill 1965, the cutin (or offset, break-point or threshold) voltage for a silicon diode is 0.6, and 0.2 for germanium.Breakdown voltage is another thing entirely. It is the reverse voltage at which the junction will break down.


What is the lifetime of barrier voltage in a diode?

The barrier voltage of a diode is 0.7v for silicon and 0.3 for germanium. after this voltage is reached the current starts increasing rapidly... till this voltage is reached the current increases in very small steps...


Why does a diode not conduct until the cut in voltage is reached?

Cut in voltage is the minimum voltage required to overcome the barrier potential. In other words it is like trying to push a large boulder....it may not be possible to push a large boulder by one person but it may be done if 2 or more people try to push it together depending on the size of the boulder.....similarly....the charge carriers in the barrier region have a potential energy of about 0.6V for Silicon and about 0.2V for Germanium. so in order for the diode to conduct, it is required to overcome the potential of the charge carriers in the junction barrier region and hence only if a potential more than that of the barrier potential (cut off voltage) is applied, then electrons flow past the junction barrier and the diode conducts.


Which best describes a conducting forward-biased germanium diode?

Negitive cathode, positive anode, voltage accross barrier = 0.3V


What is meant by 0.3 volts for germanium and 0.7 volts for silicon?

== When we make a semiconductor junction (a p-n junction), the electric fields force charges to shift creating what is called a depletion region. This depletion region forms a potential barrier across the junction. This potential barrier has a voltage associated with it, and that voltage is 0.3 volts (approximately) for germanium semiconductor material, and 0.7 volts (approximately) for silicon semiconductor. The terms we apply to this barrier potential are the built-in voltage (or potential), junction voltage (or potential), and contact potential. Use the link below to check facts and review some other closely related material.


What is O in oa79 diode?

In general O in diodes stands for germanium.since OA79 is a germanium diode O stands for germanium


What happens to the barrier potential when the temperature increases?

When the temperature increases, the barrier potential in a semiconductor diode decreases. This is due to the increase in carrier density at higher temperatures, which results in more charge carriers being available to pass through the barrier. Ultimately, this leads to a lower resistance across the diode and a decrease in the potential barrier.