It looks as if you can use Ohm's Law to calculate this: V=IR (voltage = current x resistance).
Here are some practice questions based on Ohm's Law: If a resistor has a resistance of 10 ohms and a current of 2 amperes flowing through it, what is the voltage across the resistor? A circuit has a voltage of 12 volts applied across a resistor with a resistance of 4 ohms. What is the current flowing through the resistor? If a circuit has a current of 0.5 amperes flowing through a resistor with a resistance of 8 ohms, what is the voltage across the resistor? These questions will help you practice applying Ohm's Law to calculate voltage, current, and resistance in electrical circuits.
Use the equation, V= IR from Ohm's Law V is the voltage, I is the current, and R is the resistance in ohms So then, solve the equation for I (the current) and you get I=V/R. Then just plug in the values... I= 12/3, which equals 4 A. (For current, it is measured in amperes, or just "A" as the unit.)
If the 3-ohm resistor is the ONLY thing in the circuit, then the current flowing through it is (12 volts)/(3 ohms) = 4 amperes. If there are other things in the circuit besides the resistor, then the current depends on all of them.
The current depends on the total effecvtive resistance of everything connectedacross the battery.If the bulb is the only component there, then the current is E/R = 9/12 = 0.75 amperes.
The current flowing through the circuit can be calculated using Ohm's Law: I = V/R, where I is the current, V is the voltage (12 volts), and R is the resistance (25 ohms). Plugging in the values, the current would be 0.48 amperes.
amperes or A.
Here are some practice questions based on Ohm's Law: If a resistor has a resistance of 10 ohms and a current of 2 amperes flowing through it, what is the voltage across the resistor? A circuit has a voltage of 12 volts applied across a resistor with a resistance of 4 ohms. What is the current flowing through the resistor? If a circuit has a current of 0.5 amperes flowing through a resistor with a resistance of 8 ohms, what is the voltage across the resistor? These questions will help you practice applying Ohm's Law to calculate voltage, current, and resistance in electrical circuits.
Use the equation, V= IR from Ohm's Law V is the voltage, I is the current, and R is the resistance in ohms So then, solve the equation for I (the current) and you get I=V/R. Then just plug in the values... I= 12/3, which equals 4 A. (For current, it is measured in amperes, or just "A" as the unit.)
If the 3-ohm resistor is the ONLY thing in the circuit, then the current flowing through it is (12 volts)/(3 ohms) = 4 amperes. If there are other things in the circuit besides the resistor, then the current depends on all of them.
The current depends on the total effecvtive resistance of everything connectedacross the battery.If the bulb is the only component there, then the current is E/R = 9/12 = 0.75 amperes.
The current flowing through the circuit can be calculated using Ohm's Law: I = V/R, where I is the current, V is the voltage (12 volts), and R is the resistance (25 ohms). Plugging in the values, the current would be 0.48 amperes.
A resistance of 3 ohms connected between the terminals of a 9-volt battery will result in a current of 3 Amperes. If the battery is one of those little ones with snaps on top, it may be able to produce 3 amperes of current for about 3 seconds before it rolls over and totally dies.
If the two 5 ohm resistors were in series, then the current would be 1.2 amperes. If they were in parallel, then the current would be 4.8 amperes. Ohm's Law: Current = Voltage divided by Resistance RSeries = Summation1toN RN RPARALLEL = 1 / Summation1toN (1 / RN)
An ammeter measured how many amperes of current are flowing in an electrical circuit.
One of Kierchieff's laws tell us that the more wattage (energy) consumed by an electrical device in a circuit, the larger the voltage difference that exists across the device and the greater the current flowing through it. The energy consumed is directly proportional to the Impedance of the electrical device but is more importantly proportional to the square of the current. WATTS=VOLTS X AMPERES= RESISTANCE (IMPEDANCE) X AMPERES X AMPERES A Circuit with Current but without resistance would exhibit no energy at all.
The strength of an electric current is measured in amperes (A). The strength of a current can vary depending on the voltage and the resistance of the circuit it is flowing through. High currents can be dangerous and cause harm to humans or damage to electrical equipment.
Ohm's Law states that the current flowing through a conductor is directly proportional to the voltage applied across it, and inversely proportional to the resistance of the conductor. This can be expressed as the formula I V/R, where I is the current in amperes, V is the voltage in volts, and R is the resistance in ohms.