answersLogoWhite

0

Mercury is the most buoyant liquid because it is very dense and results in objects floating easily on its surface.

User Avatar

AnswerBot

1y ago

What else can I help you with?

Continue Learning about Physics

What is the relationship of buoyant force and density of liquid?

The buoyant force on an object submerged in a liquid is equal to the weight of the displaced liquid. The density of the liquid affects the buoyant force as denser liquids will exert a greater buoyant force on an object compared to less dense liquids.


What is the relationship between density of a liquid and the buoyant force exerted on the mass?

The buoyant force exerted on an object immersed in a liquid is equal to the weight of the liquid displaced by the object. The buoyant force is directly proportional to the density of the liquid. Therefore, the denser the liquid, the greater the buoyant force it exerts on the object.


What liquid would exert a greater buoyant force?

A liquid with higher density will exert a greater buoyant force. This is because buoyant force is proportional to the density of the liquid displaced by the object.


Does the weight of an object immersed in a buoyant liquid affect the buoyant force on the object?

It is not the weight of the immersed object but the volume of the object would affect the buoyant force on the immersed object because the buoyant force is nothing but the weight of the displaced liquid whose volume is equal to that of the immersed object.


WHAT IS the relation between the Buoyant force and the weight of an object floating in a liquid?

The buoyant force is equal to the weight of the liquid displaced by the object. When an object floats in a liquid, it displaces a volume of liquid equal to its own volume, and the buoyant force acting on the object is equal to the weight of this displaced liquid, which is equal to the weight of the object. This is why the object stays afloat.

Related Questions

What is the relationship of buoyant force and density of liquid?

The buoyant force on an object submerged in a liquid is equal to the weight of the displaced liquid. The density of the liquid affects the buoyant force as denser liquids will exert a greater buoyant force on an object compared to less dense liquids.


What is the relationship between density of a liquid and the buoyant force exerted on the mass?

The buoyant force exerted on an object immersed in a liquid is equal to the weight of the liquid displaced by the object. The buoyant force is directly proportional to the density of the liquid. Therefore, the denser the liquid, the greater the buoyant force it exerts on the object.


What are the factors of buoyant force?

The buoyant force depends on the volume of liquid displaced and the density of the liquid.


What liquid would exert a greater buoyant force?

A liquid with higher density will exert a greater buoyant force. This is because buoyant force is proportional to the density of the liquid displaced by the object.


Why does solid body weigh more in air than when immersed in a liquid?

the buoyant force of the liquid on the solid is more than the buoyant force of the air on the solid.


Does the weight of an object immersed in a buoyant liquid affect the buoyant force on the object?

It is not the weight of the immersed object but the volume of the object would affect the buoyant force on the immersed object because the buoyant force is nothing but the weight of the displaced liquid whose volume is equal to that of the immersed object.


What is the upward force in the liquid?

The Buoyant Force


WHAT IS the relation between the Buoyant force and the weight of an object floating in a liquid?

The buoyant force is equal to the weight of the liquid displaced by the object. When an object floats in a liquid, it displaces a volume of liquid equal to its own volume, and the buoyant force acting on the object is equal to the weight of this displaced liquid, which is equal to the weight of the object. This is why the object stays afloat.


Who stated the idea that buoyant force is equal to the weight of the displaced liquid?

According to Archimedes' principle, buoyant force is equal to the weight of the displaced liquid.


When an object immersed in 3 different liquids. Will it experiences same buoyant force due to all the liquids?

No, the object will experience different buoyant forces in each liquid depending on the density of the liquid. The buoyant force is equal to the weight of the liquid displaced by the object, so if the densities of the liquids are different, the buoyant forces will be different.


Does the more displaced liquid more buoyant?

Buoyant force = volume x density x acceleration due to gravity So more the volume greater the buoyant force ___________________________________ The volume above must be volume of liquid displaced, not the volume of the object placed in the liquid.


Is buoyant force a contact force?

The buoyant force is a contact force, exerted by contact with a liquid that displaces the liquid within a gravity field. No contact, no force.