The vertical velocity at the highest point of the trajectory, the vertical displacement when the projectile returns to its initial height, and the vertical acceleration at the highest point are all zero throughout the flight of a projectile.
During projectile motion, the vertical velocity is zero at the highest point of the trajectory. However, the horizontal velocity is constant throughout the flight and never zero assuming no external forces act horizontally. The acceleration due to gravity is always acting vertically downwards and is never zero during the flight of a projectile.
The vertical speed of a projectile at the top of its flight is zero, as it momentarily comes to a stop before beginning its descent due to gravity.
It depends. If the projectile goes straight up and straight down, its velocity will be zero at the top. If the projectile is a baseball about halfway between the pitcher and the bat, its velocity might be 150 km/h.
The velocity of a projectile at its maximum height is zero. This is because at the highest point of the projectile's trajectory, all of its initial kinetic energy has been converted into potential energy, causing the velocity to momentarily become zero.
All that I can think of are: 1.) Gravity 2.) Wind 2.A) wind speed 2.B) direction of wind 3.) Angle of trajectory 4.) Initial speed of projectile 5.) Material through which projectile travels (as in density) 6.) Mass of projectile 7.) Spin 7.A) speed of spin 7.B) axis/axes spining occurs on 8.) Shape of projectile 9.) Temperature of medium projectile is in 10.) Size of projectile (as in height, width, and depth) 11.) Weighting of projectile 12.) Obsturctions to projectile's path In a vaccuum, though, these are the variables: 1.) Speed of object 2.) Obstructions in path 3.) Gravity
During projectile motion, the vertical velocity is zero at the highest point of the trajectory. However, the horizontal velocity is constant throughout the flight and never zero assuming no external forces act horizontally. The acceleration due to gravity is always acting vertically downwards and is never zero during the flight of a projectile.
The vertical speed of a projectile at the top of its flight is zero, as it momentarily comes to a stop before beginning its descent due to gravity.
It depends. If the projectile goes straight up and straight down, its velocity will be zero at the top. If the projectile is a baseball about halfway between the pitcher and the bat, its velocity might be 150 km/h.
The velocity of a projectile at its maximum height is zero. This is because at the highest point of the projectile's trajectory, all of its initial kinetic energy has been converted into potential energy, causing the velocity to momentarily become zero.
Zero.
All that I can think of are: 1.) Gravity 2.) Wind 2.A) wind speed 2.B) direction of wind 3.) Angle of trajectory 4.) Initial speed of projectile 5.) Material through which projectile travels (as in density) 6.) Mass of projectile 7.) Spin 7.A) speed of spin 7.B) axis/axes spining occurs on 8.) Shape of projectile 9.) Temperature of medium projectile is in 10.) Size of projectile (as in height, width, and depth) 11.) Weighting of projectile 12.) Obsturctions to projectile's path In a vaccuum, though, these are the variables: 1.) Speed of object 2.) Obstructions in path 3.) Gravity
At the highest point of its trajectory, the direction of an oblique projectile will be horizontal. This means that the projectile will momentarily have zero vertical velocity and only horizontal velocity.
The vertical speed at the highest point of a projectile's trajectory is zero. This is because at the peak of the trajectory, the projectile momentarily stops ascending and starts descending, resulting in a velocity of zero in the vertical direction.
At the highest point of its trajectory, the speed of a projectile is equal to zero as it momentarily stops before starting to descend.
At the top of its path, the vertical component of the projectile's velocity is zero, making the overall speed minimum. This occurs because gravity slows down the projectile's upward motion until it stops momentarily before falling back down. The horizontal component of the velocity remains constant throughout the motion.
The horizontal component of a projectile's velocity doesn't change, until the projectile hits somethingor falls to the ground.The vertical component of a projectile's velocity becomes [9.8 meters per second downward] greatereach second. At the maximum height of its trajectory, the projectile's velocity is zero. That's the pointwhere the velocity transitions from upward to downward.
No, assuming no air resistance, there will be a constant downward acceleration of 9.8 meters per second square (assuming standard gravity). The vertical component of the velocity will be zero at the top of the trajectory.