Several factors can come into play here.
Any of these things can have an effect an expansion of the liquid, surface tension, and splash.
The surface tension of water allows drops to sit on a penny without overflowing. This is due to the cohesion of water molecules, which causes them to stick together and form a dome shape on the penny. Additionally, the adhesive forces between the water and the penny help to keep the water droplet in place.
It all depends on if you drop the water fast or if you drop it slow. Ideally, everyone performing the experiment would include the following: - distilled waterThere are a lot of factors involved. The cohesion and adhesion ('stickiness') of water molecules can be effected by things like oils (on surface pennies from peoples' skin) and other contaminates on the penny. The size of the dropper or pipette will determine the size of each water droplet - the larger the drop, the fewer number of drops will fit on the penny. The manner in which the water is added to the penny is also a factor. Water has a cohesive nature (the molecules are kind of like magnets and are attracted to one another). Therefore, if the drop from the pipette is allowed to touch the water already on the surface of the penny, the water can be 'pulled' out of the dropper. When this happens, the size (volume) of the drop is not always the same - it could be a very small amount (which will result in a very large number of drops), or a large amount. Soap causes the cohesiveness ('stickiness') of the water molecules to decrease so they are not as strongly attracted to each other. Because of this, when soap is added to the water the number of drops that can be placed on the penny will decrease. The water molecules can't 'stick' together as well, so the water on top of the penny spills off sooner than it would with non-soapy water. Ideally, everyone performing the experiment would include the following: - distilled water (to start with) - same type/size of calibrated dropper/pipette - same date of penny - penny cleaned as thoroughly as possible using same cleaning procedure - same 'dropping' procedure
The surface tension of water allows many drops to sit on a penny without spilling over the sides. The cohesive forces between water molecules create a strong bond, which enables the water to form a dome-like shape on the penny. This dome shape prevents the water from overflowing.
The hypothesis of the penny drop experiment is that the design of the container, the height from which the penny is dropped, and the amount of water in the container will affect whether the penny lands heads up or heads down.
The head's side of the penny is heavier because, the indentions on the head's side happens to make it slight heavier but I have tested this project out and it is not a myth it is head's.
When the Penny Drops was created in 2010.
The controlled variable is the penny. The independent variable is the water. The dependent variable is the amount of water able to fit on the penny.
Alot of drops fit because if you keep the surface tension from moving then you could put as much drops as you can.] ==If you put a penny on a flat surface and keep its tension and keep the penny from moving you can put as much drops as you can till it leaks off. You cant put as much as you want cause the penny will overflow. its not a big object?
In this experiment, the control group would be the penny! The independent variable is the substance/water on the penny, and the dependent is how many drops the penny takes.
473
for example, if drops of water are placed on the top of a penny, the surface tension is going to hold the drops on top of the penny. when the penny can hold no more, it will all overflow. make sense?
The penny's state of corrosion.
how many drops of water can a penny hold? topic: crazy penny........
Ideally, everyone performing the experiment would include the following: - distilled waterThere are a lot of factors involved. The cohesion and adhesion ('stickiness') of water molecules can be effected by things like oils (on surface pennies from peoples' skin) and other contaminates on the penny. The size of the dropper or pipette will determine the size of each water droplet - the larger the drop, the fewer number of drops will fit on the penny. The manner in which the water is added to the penny is also a factor. Water has a cohesive nature (the molecules are kind of like magnets and are attracted to one another). Therefore, if the drop from the pipette is allowed to touch the water already on the surface of the penny, the water can be 'pulled' out of the dropper. When this happens, the size (volume) of the drop is not always the same - it could be a very small amount (which will result in a very large number of drops), or a large amount. Soap causes the cohesiveness ('stickiness') of the water molecules to decrease so they are not as strongly attracted to each other. Because of this, when soap is added to the water the number of drops that can be placed on the penny will decrease. The water molecules can't 'stick' together as well, so the water on top of the penny spills off sooner than it would with non-soapy water. Ideally, everyone performing the experiment would include the following: - distilled water (to start with) - same type/size of calibrated dropper/pipette - same date of penny - penny cleaned as thoroughly as possible using same cleaning procedure - same 'dropping' procedure
Yes, in this experiment, the variable "alcohol" refers to the liquid being tested to see how many drops can fit on a penny. By changing the type of alcohol used, you can observe how it affects the number of drops that can fit on the penny due to variations in surface tension and viscosity.
Ideally, everyone performing the experiment would include the following: - distilled waterThere are a lot of factors involved. The cohesion and adhesion ('stickiness') of water molecules can be effected by things like oils (on surface pennies from peoples' skin) and other contaminates on the penny. The size of the dropper or pipette will determine the size of each water droplet - the larger the drop, the fewer number of drops will fit on the penny. The manner in which the water is added to the penny is also a factor. Water has a cohesive nature (the molecules are kind of like magnets and are attracted to one another). Therefore, if the drop from the pipette is allowed to touch the water already on the surface of the penny, the water can be 'pulled' out of the dropper. When this happens, the size (volume) of the drop is not always the same - it could be a very small amount (which will result in a very large number of drops), or a large amount. Ideally, everyone performing the experiment would include the following: - distilled water - same type/size of calibrated dropper/pipette - same date of penny - penny cleaned as thoroughly as possible using same cleaning procedure - same 'dropping' procedure
The surface tension of water allows drops to sit on a penny without overflowing. This is due to the cohesion of water molecules, which causes them to stick together and form a dome shape on the penny. Additionally, the adhesive forces between the water and the penny help to keep the water droplet in place.