Let us use Sn = u + 1/2 a [2n-1]
For n = 4, S4 = 0 + 1/2 g . 7 = 7/2 g
For n = 5, S5 = 0 + 1/2 g . 9 = 9/2 g
So required ratio S4/S5 = 7/9
The ratio of distances traveled by a body in free fall starting from rest in the first and third seconds is 1:9. This is because the body's distance traveled in each second increases in proportion to the square of the time elapsed.
Yes, an object freely falling still has mass. Mass is a measure of the amount of matter in an object, and it remains constant regardless of the object's motion. The force of gravity acting on the object is what causes it to fall.
A freely falling projectile is an object that is only acted upon by gravity, moving through the air in a parabolic path while falling towards the ground. It does not have any initial horizontal force or acceleration other than gravity acting upon it.
The sum of the kinetic and potential energies of a freely falling body is constant and equal to the total mechanical energy. This is a result of the conservation of energy principle, where the body's potential energy is converted into kinetic energy as it falls, keeping the total energy constant.
At short distances - up to a few kilometers - gravity can be considered constant, and therefore, a body in free fall (i.e., neglecting other forces, such as air resistance) will be uniformly accelerated. Over longer distances, the force of gravity is no longer the same; this will have to be considered for the "modification" (for example, less force = less acceleration). Close to the Earth's surface, in practice, air resistance has to be considered (but this is no longer "free fall").
The ratio of distances traveled by a body in free fall starting from rest in the first and third seconds is 1:9. This is because the body's distance traveled in each second increases in proportion to the square of the time elapsed.
With the information given, all that can be said is that the distance is greater than the distance the object traveled in the previous second.
A freely body is the body which is freely falling under the force of gravity i.e. an acceleration of 9.8 m/s2
Freely falling bodies
force and gravity
Yes, an object freely falling still has mass. Mass is a measure of the amount of matter in an object, and it remains constant regardless of the object's motion. The force of gravity acting on the object is what causes it to fall.
9.8 m/s2
A freely falling projectile is an object that is only acted upon by gravity, moving through the air in a parabolic path while falling towards the ground. It does not have any initial horizontal force or acceleration other than gravity acting upon it.
The sum of the kinetic and potential energies of a freely falling body is constant and equal to the total mechanical energy. This is a result of the conservation of energy principle, where the body's potential energy is converted into kinetic energy as it falls, keeping the total energy constant.
None whatsoever.
The moon, Earth's artificial satelites, etc.
It accelerates at a higher rate