The last three people who posted this question, frankly, did a
much better job of copying it from wherever it appeared first.
To increase frictional force, you can increase the roughness of the surfaces in contact, increase the normal force pressing the surfaces together, or increase the coefficient of friction by using materials that interact with more resistance. To decrease frictional force, you can use lubricants to reduce surface interaction, decrease the normal force, or use smoother materials to reduce resistance.
As temperature increases, the resistance of conducting materials also typically increases. This is because as temperature rises, the atoms in the material vibrate more, leading to more collisions with electrons, which in turn increases resistance. Conversely, as temperature decreases, resistance tends to decrease as well.
You can decrease the degree of damping by reducing the amount of friction or resistance in the system. This can be achieved by using lighter weight damping materials, adjusting the damping coefficients, or using a less viscous damping fluid.
Decreasing the length or increasing the thickness of the wire would cause its resistance to decrease.
You can reduce air resistance on a moving object by streamlining its shape to reduce turbulence, minimizing surface area exposed to the air, and using smooth, aerodynamic materials. Additionally, increasing the object's speed can help decrease the impact of air resistance.
Resistance decreases with the decrease of temperature. Superconductors are made by lowering the temperature.
Some materials have negative temperature coefficients of resistance, and some have positive temperature coefficients. Carbon is an example of a substance with a negative thermal coefficient of resistance, so it's resistance will decrease as it gets hotter.
To increase frictional force, you can increase the roughness of the surfaces in contact, increase the normal force pressing the surfaces together, or increase the coefficient of friction by using materials that interact with more resistance. To decrease frictional force, you can use lubricants to reduce surface interaction, decrease the normal force, or use smoother materials to reduce resistance.
Yes, the efficiency increases. Yes, it is linear. Power lost in a current-carrying conductor is: P = I^2 * R So, if you halve the resistance, you halve the power loss. Note though that the current (I) term is squared. So if you can decrease the current by increasing the transmission voltage, the increase in efficiency is not linear, but exponential! Halve the current (and double the voltage to get the same power), and you reduce losses by four times! This is why utilities use such high voltages for transmission. Superconductors are no different, you are still talking about a reduction in resistance, superconductors just achieve a much lower resistance than a standard conductor. The question is whether the cost of superconductors and their cooling systems (currently very high) outweigh the modest gain in transmission efficiency.
As temperature increases, the resistance of conducting materials also typically increases. This is because as temperature rises, the atoms in the material vibrate more, leading to more collisions with electrons, which in turn increases resistance. Conversely, as temperature decreases, resistance tends to decrease as well.
decrease
You can decrease the degree of damping by reducing the amount of friction or resistance in the system. This can be achieved by using lighter weight damping materials, adjusting the damping coefficients, or using a less viscous damping fluid.
Increase resistance
Decreasing the length or increasing the thickness of the wire would cause its resistance to decrease.
In order to decrease voltage without decreasing amperes you have to also decrease resistance. Ohm's Law: Voltage = current times resistance
If voltage remains constant and resistance is increased, the amperage will decrease per Ohm's Law.
If additional resistance is connected in parallel with a circuit the supply voltage will decrease?