PE = m•g•h, where m is mass in kg, g is 9.8m/s2, and h is height above the earth in meters. When the ball hits the ground, it is zero meters above the earth, therefore its PE is zero.
When a ball hits the ground, the potential energy it had due to its height is converted into kinetic energy as it falls. Upon impact, some of this kinetic energy is transferred into sound and heat energy through the compression of the ball and ground.
When a ball hits the ground, some of its energy is transferred into the ground as ground deformation and sound. The rest of the energy is converted into heat due to friction between the ball and the ground, and some may be converted back into potential energy if the ball rebounds.
When a ball is dropped, the energy involved is primarily gravitational potential energy being converted into kinetic energy as the ball accelerates towards the ground. When the ball hits the ground, some of this kinetic energy is transferred to the ground as impact energy.
When a ball bounces on the ground, it demonstrates the interaction between the ball and the ground through the transfer of energy. The ball compresses when it hits the ground, storing potential energy. This energy is then released as the ball rebounds off the ground, showing the exchange of forces between the ball and the surface it bounces on.
When a bouncing ball hits the ground, some of its kinetic energy is converted into potential energy as it deforms and compresses. As the ball pushes off the ground, this potential energy is converted back into kinetic energy, allowing the ball to bounce back up. Throughout this process, the total energy (kinetic + potential) remains constant, in accordance with the law of conservation of energy.
When a ball hits the ground, the potential energy it had due to its height is converted into kinetic energy as it falls. Upon impact, some of this kinetic energy is transferred into sound and heat energy through the compression of the ball and ground.
When a ball hits the ground, some of its energy is transferred into the ground as ground deformation and sound. The rest of the energy is converted into heat due to friction between the ball and the ground, and some may be converted back into potential energy if the ball rebounds.
When a ball is about to fall it has potential energy because of its height.When a ball is about to hit the ground it still has some potential energy since it has't hit the ground yet, but much less than it had when it started falling.
When a ball is dropped, the energy involved is primarily gravitational potential energy being converted into kinetic energy as the ball accelerates towards the ground. When the ball hits the ground, some of this kinetic energy is transferred to the ground as impact energy.
When a ball bounces on the ground, it demonstrates the interaction between the ball and the ground through the transfer of energy. The ball compresses when it hits the ground, storing potential energy. This energy is then released as the ball rebounds off the ground, showing the exchange of forces between the ball and the surface it bounces on.
When a bouncing ball hits the ground, some of its kinetic energy is converted into potential energy as it deforms and compresses. As the ball pushes off the ground, this potential energy is converted back into kinetic energy, allowing the ball to bounce back up. Throughout this process, the total energy (kinetic + potential) remains constant, in accordance with the law of conservation of energy.
The potential energy of the rubber ball is converted into kinetic energy as it falls. When the ball hits the ground, some of the energy is absorbed by the ball and the ground, while the rest is converted to other forms such as sound and heat.
When the ball is positioned in your hands it has full potential energy. As you move and the ball is thrown at the basket, the potential energy is converted to kinetic energy, by the transfer of kinetic energy from your arms, to your hands, to the ball. When the ball hits the basket some of its kinetic energy was converted into potential energy and then back into kinetic energy as it hit the ground.
A ball bounces because of the conservation of energy. When a ball is dropped, it gains potential energy. When it hits the ground, this energy is converted into kinetic energy, causing the ball to bounce back up until all the energy is dissipated.
When a bouncy ball is dropped, potential energy stored in the ball is converted into kinetic energy as it falls. When the ball hits the ground, some of the kinetic energy is converted back into potential energy as the ball momentarily compresses before bouncing back up.
The ball bounces when it hits the ground because of the conservation of energy. When the ball impacts the ground, it deforms and stores some energy. This stored energy is released as the ball rebounds off the ground, causing it to bounce back up.
Seriously -.-' First of all When You throw The Basketball it is going up^ Which is Kinetic energy when is comes down and STOPS it is Potential energy. Oh And this question is in the 6th grade science textbook! The orange textbook....so yeah. BYe