At the peak of the trajectory the potential energy will be at it's maximum and the vertical component (perpendicular to the earth) will be zero, ie if the ball was thrown straight up from the ground, it will start off with no potential energy and high kinetic energy. As it moves upward, the force of gravity will act on it and it will slow, thus the KE will decrease. At the same time it is gaining altitude, so the PE will increase. A the peak the KE is 0 and the PE is maximized and the ball is motionless. Then the ball will fall towards the earth and its KE will increase as it gains speed and its PE will decrease as it loses altitude until it hits the ground with the same amount of KE it started with, but moving in the opposite direction.
When a basketball bounces, the potential energy is converted into kinetic energy as it falls downward. This kinetic energy then allows the ball to compress upon impact with the floor, storing elastic potential energy. This potential energy is then converted back into kinetic energy as the ball rebounds back up.
When a ball is dropped and bounces, potential energy is converted into kinetic energy as it falls. Upon impact with the ground, some of the kinetic energy is converted into elastic potential energy as the ball compresses. This elastic potential energy is then converted back into kinetic energy as the ball bounces back up.
kinetic energy is enegy being used, the opposite of potential energy, which is energy being stored, or waiting to be used. When a ball bounces it is using its energy. When a ball is held by a person, it holds potential energy, or the potential to use energy.
The clock pendulum and swings are at their highest potential energy at the highest point of their swing when they are farthest from the ground. They are at their highest kinetic energy at their lowest point of their swing when they have the most speed. This is because potential energy is highest when the object is highest, and kinetic energy is highest when the object is moving the fastest.
Kinetic energy is highest at point b in a pendulum because this is the lowest point in the swing where the velocity of the pendulum bob is highest due to the conversion of potential energy into kinetic energy as the pendulum falls. At the highest point, the potential energy is at its maximum and kinetic energy is at its minimum.
Basically 2 types of energy are involved, Kinetic and Potential energy. When the ball bounces the kinetic energy starts changing into potential energy or as commonly referred to as energy of recoil.
When a basketball bounces, the potential energy is converted into kinetic energy as it falls downward. This kinetic energy then allows the ball to compress upon impact with the floor, storing elastic potential energy. This potential energy is then converted back into kinetic energy as the ball rebounds back up.
The greater the gravitational potential energy the more the kinetic energy, so as it bounces, the gravitational potential energy will decrease, so will the kinetic energy decrease and everything will decrease and they will suck
When a ball is dropped and bounces, potential energy is converted into kinetic energy as it falls. Upon impact with the ground, some of the kinetic energy is converted into elastic potential energy as the ball compresses. This elastic potential energy is then converted back into kinetic energy as the ball bounces back up.
kinetic energy is enegy being used, the opposite of potential energy, which is energy being stored, or waiting to be used. When a ball bounces it is using its energy. When a ball is held by a person, it holds potential energy, or the potential to use energy.
The clock pendulum and swings are at their highest potential energy at the highest point of their swing when they are farthest from the ground. They are at their highest kinetic energy at their lowest point of their swing when they have the most speed. This is because potential energy is highest when the object is highest, and kinetic energy is highest when the object is moving the fastest.
Kinetic energy is highest at point b in a pendulum because this is the lowest point in the swing where the velocity of the pendulum bob is highest due to the conversion of potential energy into kinetic energy as the pendulum falls. At the highest point, the potential energy is at its maximum and kinetic energy is at its minimum.
Potential energy can be converted into kinetic energy, as seen in a swinging pendulum where potential energy at the highest point is converted into kinetic energy at the lowest point.
As the swing moves, potential energy changes into kinetic energy. At the highest position all energy is gravitational potential energy as the swing has stopped at its highest position. Then the energy is converted back to kinetic energy, KE as it descends.
A swinging pendulum has both potential energy at its highest point and kinetic energy at its lowest point as it moves.
-- If you're talking about a pendulum, then the potential energy is highest and kinetic energy is zero at the ends of the swing, and potential energy is lowest and kinetic energy is highest in the middle of the swing. -- If you're not talking about a pendulum, then the preceding may be completely wrong.
Yes, a swinging pendulum has both kinetic energy and potential energy. At the highest point of the swing, the potential energy is highest, and at the lowest point, the kinetic energy is highest. The total energy remains constant throughout the motion due to conservation of energy.