The force is greater than zero or unbalanced.
The relationship between the different inertia of objects and their ability to resist changes in motion is that objects with greater inertia are more resistant to changes in motion. Inertia is the tendency of an object to stay at rest or in motion unless acted upon by an external force. Objects with higher inertia require more force to change their motion compared to objects with lower inertia.
Objects tend to resist changes in motion due to inertia, which is the tendency of an object to maintain its current state of motion. The greater the mass of an object, the greater its inertia and resistance to changes in motion. This resistance is why objects require a force to accelerate, decelerate, or change direction.
An object's state of motion changes when an unbalanced force is applied to it. This force can either speed up, slow down, or change the direction of the object's motion. This change in motion is described by Newton's laws of motion.
A force must be applied to an object in order to change its motion or direction. This force can be in the form of a push or pull exerted on the object. The magnitude and direction of the force applied will determine how the object's motion changes.
The name for such a force is either "non-zero net force" or "unbalanced force". The name for the change of motion is "acceleration".
unbalance force
A force.
It is called acceleration.
The relationship between the different inertia of objects and their ability to resist changes in motion is that objects with greater inertia are more resistant to changes in motion. Inertia is the tendency of an object to stay at rest or in motion unless acted upon by an external force. Objects with higher inertia require more force to change their motion compared to objects with lower inertia.
Objects tend to resist changes in motion due to inertia, which is the tendency of an object to maintain its current state of motion. The greater the mass of an object, the greater its inertia and resistance to changes in motion. This resistance is why objects require a force to accelerate, decelerate, or change direction.
An object's state of motion changes when an unbalanced force is applied to it. This force can either speed up, slow down, or change the direction of the object's motion. This change in motion is described by Newton's laws of motion.
A force must be applied to an object in order to change its motion or direction. This force can be in the form of a push or pull exerted on the object. The magnitude and direction of the force applied will determine how the object's motion changes.
The name for such a force is either "non-zero net force" or "unbalanced force". The name for the change of motion is "acceleration".
This is newton's second law. An object in motion will stay in motion unless another force acts on it. Answer2: Inertia. Newton's 1st law states no force , no change or no change no force.
Inertia describes the tendency for objects to resist changes in their motion. This means that objects will remain at rest or in motion at a constant velocity unless acted upon by an external force.
Inertia and force are both related to the motion of an object. Inertia is the tendency of an object to resist changes in its motion, while force is what causes changes in the motion of an object. Both concepts are fundamental to understanding how objects move and interact with each other in the physical world.
All objects resist changes in their state of motion