answersLogoWhite

0

What else can I help you with?

Continue Learning about Physics

When an electron gets excited is energy released or absorbed?

When an electron gets excited, energy is absorbed to move the electron to a higher energy level. This absorbed energy gets released when the electron returns to its original energy level, emitting electromagnetic radiation such as light.


What is the relationship between an electron's location and the energy it has?

An electron can be located in any of several energy levels around the nucleus of an atom. Usually, an electron will occupy the "ground state," which is the lowest energy level available. Electrons can be thought of as being lazy, which means they don't want to work any harder than they have to; and occupying the ground state amounts to the path of least resistance. Occasionally, however, an electron can "bump up" to a higher energy level. It can do this by absorbing energy from an outside source, such as an electrical current. It will occupy this higher energy level for a certain amount of time, then drop back to its ground state, releasing that same energy it absorbed to get there. The amount of energy absorbed is called a quantum. Often, the electron will release that quantum of energy as a photon, which is a "bundle" of light. Billions of photons can be a light that you can see, and this is how neon lights and glow sticks work. So the higher an energy level an electron occupies, the higher its energy.


How can a photon be destroyed or created?

A photon can be created when an electron transitions to a lower energy level and emits a photon. Conversely, a photon can be absorbed and "destroyed" when it is absorbed by an electron, causing the electron to transition to a higher energy level.


Can you explain why an electron's energy increases when it absorbs a photon and also describe what happens to the photon in this process?

When an electron absorbs a photon, its energy increases because the photon transfers its energy to the electron. The photon ceases to exist as a discrete particle and its energy is absorbed by the electron, causing it to move to a higher energy level.


What happens when an electron in an atom absorbs energy?

When an electron in an atom absorbs a specific "Quantum" of energy, it will jump to the next specific energy level in the atom. It'll then jump back down, and in so doing releasing light and giving off a signature light spectrum for an element.

Related Questions

When an electron moves up to a higher orbit a quantum of light energy is absorbed. This quantum of light energy is also known as?

photon


When an electron moves up to a higher orbit a quantum of light energy is absorbed this quantum of light energy is also known as?

photon


What can you assume if an electron moves to a higher energy level?

When an electron is moved to a higher energy level,after absorption, the quantum no longer exists as a separate entity -- its energy has been seamlessly integrated ...into the orbital energy of the electron. If the electon absorbs another quantum, that is likewise integrated seamlessly. if the electron drops down a level toward the nucleus, it emits some of its energy as a quantum, outside the electron, that quantum exists as a photon (electromagnetic radiation). inside an electron, there are no separate or independent quanta. in case of an annihilation, ALL the energy of the electron turns into one quantum (and all the energy of the positron into another quantum).If i didn't do a good job of explaining this, please post in the DiscBrd AND send me a private message, and i will try to clarify.


What is a principal quantam number?

The principal quantum number (n) defines the main energy level or shell of an electron in an atom. It determines the average distance of the electron from the nucleus, as well as the energy of the electron. The higher the principal quantum number, the higher the energy level and the greater the distance from the nucleus.


If an electron has absorbed energy and has shifted to a higher energy level the electron is said to be what?

This electron is called excited.


What is the Principal Energy Level?

The principal energy level is the main energy level of an electron in an atom, designated by the quantum number "n." It indicates the approximate energy and distance of an electron from the nucleus. The higher the principal energy level, the higher the energy and distance of the electron from the nucleus.


When an electron gets excited is energy released or absorbed?

When an electron gets excited, energy is absorbed to move the electron to a higher energy level. This absorbed energy gets released when the electron returns to its original energy level, emitting electromagnetic radiation such as light.


Which of the quantum numbers is related to the size and energy of the orbital?

The principal quantum number (n) is related to the size and energy of the orbital. It indicates the main energy level of an electron and correlates with the average distance of the electron from the nucleus. A higher principal quantum number corresponds to a larger orbital size and higher energy.


What happens to electrons when pigments in photo-systems 2 absorb light?

Light or photons are little packets of energy. When this energy is absorbed by an electron it boots the electrons energy and the electron jumps to a higher orbital shell position (which must be vacant of its electron). The electron can only do this when the energy needed for the jump and the energy in the incoming photon match. Thus specific colours of light are absorbed depending on the element present.


What information does the first quantum number if an electron give?

The first quantum number, known as the principal quantum number (n), provides information about the energy level or shell in which an electron is located in an atom. It indicates the distance of the electron from the nucleus, with larger values of n corresponding to higher energy levels farther from the nucleus.


What does the atom do when the electron moves from lower to higher energy level?

When an electron moves from a lower to a higher energy level, it absorbs energy and jumps to a higher orbit. This process is known as excitation. The electron can then release this absorbed energy as light when it moves back down to a lower energy level.


When an electron in an atom moves from a lower energy state to a higher state?

The electron absorbs energy and moves to a higher energy level. This process is known as excitation. The electron can then release the absorbed energy by emitting a photon and returning to a lower energy state.