faraday method
To find the number of moles in 1.1 grams of FeCl3, you'll first determine the molar mass of FeCl3 (55.85 + 35.45*3) = 162.31 g/mol. Then, divide the given mass (1.1g) by the molar mass to get the number of moles (1.1g / 162.31g/mol ≈ 0.007 moles of FeCl3).
To find the number of Cl ions in FeCl3, we first need to calculate the molar mass of FeCl3. Iron (Fe) has a molar mass of approximately 55.85 g/mol, and chlorine (Cl) has a molar mass of approximately 35.45 g/mol. Therefore, the molar mass of FeCl3 is 55.85 + (3 * 35.45) = 126.2 g/mol. Next, we determine how many moles of FeCl3 are present in 50.0 g by dividing the mass by the molar mass: 50.0 g / 126.2 g/mol ≈ 0.396 mol. Since there are 3 Cl ions in every FeCl3 molecule, there are approximately 0.396 mol * 3 = 1.19 mol of Cl ions. Finally, we use Avogadro's number (6.022 x 10^23 molecules/mol) to find the number of Cl ions: 1.19 mol * 6.022 x 10^23 Cl molecules/mol = approximately 7.16 x 10^23 Cl ions.
The magnetic susceptibility of FeCl3 (Iron(III) chloride) varies depending on the temperature and the state of iron ions in the compound. At room temperature, the magnetic susceptibility of FeCl3 is typically around 5-7 x 10^-6 cm^3/mol.
The differences in results between the titration method and the FeCl3 method could be due to variations in the methods themselves. The titration method measures the amount of a specific substance through a chemical reaction, while the FeCl3 method detects a different property or compound in the tablet. Additionally, the precision and sensitivity of each method may differ, leading to discrepancies in the results obtained.
To find the number of moles in 1.1 grams of FeCl3, you'll first determine the molar mass of FeCl3 (55.85 + 35.45*3) = 162.31 g/mol. Then, divide the given mass (1.1g) by the molar mass to get the number of moles (1.1g / 162.31g/mol ≈ 0.007 moles of FeCl3).
FeCl3 + H2O4-2 +Zn
The molar mass of FeCl3 is 162.20 g/mol. First, convert 40.0 g to moles by dividing by the molar mass. Then, calculate the concentration in mol/L by dividing the moles of FeCl3 by the volume of the solution in liters (0.275 L).
The amount of FeCl3 needed depends on the concentration of the FeCl3 solution required for the test. Typically, a 2-5% solution of FeCl3 is used. To make a 100mL of 2-5% FeCl3 solution, you would need to dissolve 2-5 grams of FeCl3 in distilled water. The exact amount can be calculated using the formula: (desired % concentration/100) x volume of solution needed x molar mass of FeCl3.
When ferric chloride (FeCl3) is mixed with iron (Fe), the iron displaces the chloride ion to form ferrous chloride (FeCl2) and iron chloride (FeCl3). The chemical equation is: FeCl3 + Fe -> FeCl2 + FeCl3.
Yes, FeCl3 is soluble in water. It forms a greenish-brown solution when dissolved in water.
The formula shows that there is one atoms of iron in each formula unit of FeCl3, and by definition the number of molecules or formula units in a mole is Avogadro's Number. Therefore, 5.33 moles contains 5.33 X Avogadro's Number of atoms, which is 3.21 X 1024 atoms, to the justified number of significant digits.
To find the moles of Fe2S3 produced, convert 0.690 g to moles using the molar mass of Fe2S3. Then, use the stoichiometry of the reaction to determine the moles of FeCl3 required. Finally, use the molarity of FeCl3 to calculate the volume in milliliters needed, keeping in mind the percent yield.
I don't have a good calculator, but i'll talk you through (will actually benefit you to do it yourself, this will come back to bite you if you don't learn it). Avagadros number is no. molecules per mole. 5.88x1028 / avagadros number gives your amount of moles. Moles / molecular weight gives weight
Iron (III) Cloride