You would use the equation E=hf, where E represents the energy of the photon, h is Planck's constant, and f is the frequency of the photon.
Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.
The energy of a photon can be calculated using the equation E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength of the photon. Plugging in the values for h, c, and λ, we can calculate the energy of one photon at 400 nm. To find the energy of 1 mol of photons, we would multiply the energy of one photon by Avogadro's number.
Photon energy is proportional to frequency ==> inversely proportional to wavelength.3 times the energy ==> 1/3 times the wavelength = 779/3 = 2592/3 nm
The energy of a photon can be calculated using the formula E = h * f, where h is Planck's constant (6.626 x 10^-34 J*s) and f is the frequency of the photon. Thus, for a frequency of 5 x 10^12 Hz, the energy of the photon would be 3.31 x 10^-21 Joules.
The energy of a photon is given by the formula E = hf, where h is Planck's constant (6.626 x 10^-34 J s) and f is the frequency of the photon. So, for a photon with a frequency of 6 x 10^12 Hz, the energy would be approximately 3.98 x 10^-21 Joules.
Since the energy of a photon is inversely proportional to its wavelength, for a photon with double the energy of a 580 nm photon, its wavelength would be half that of the 580 nm photon. Therefore, the wavelength of the photon with twice the energy would be 290 nm.
The energy of a photon can be calculated using the equation E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength of the photon. Plugging in the values for h, c, and λ, we can calculate the energy of one photon at 400 nm. To find the energy of 1 mol of photons, we would multiply the energy of one photon by Avogadro's number.
The lowest possible energy state for a photon is when it has no energy, which corresponds to a frequency of zero.
no
radiate energy
No, sound wave is translating wave of the matter. The solar energy is the wave carried by photon which is an energy (non-matter). There is no way a sound wave would be carried in the stream of photon.
Red color
Photon energy is proportional to frequency ==> inversely proportional to wavelength.3 times the energy ==> 1/3 times the wavelength = 779/3 = 2592/3 nm
The energy of a photon can be calculated using the formula E = h * f, where h is Planck's constant (6.626 x 10^-34 J*s) and f is the frequency of the photon. Thus, for a frequency of 5 x 10^12 Hz, the energy of the photon would be 3.31 x 10^-21 Joules.
To determine the number of photons required to raise the temperature of 2.4g of water by 2.5K, you would need to know the energy of each photon, which depends on the wavelength/frequency of the light source. With this information, you can calculate the total energy needed to raise the temperature of the water by 2.5K and then convert this energy into the number of photons using the energy per photon value.
The energy of a photon is given by the formula E = hf, where h is Planck's constant (6.626 x 10^-34 J s) and f is the frequency of the photon. So, for a photon with a frequency of 6 x 10^12 Hz, the energy would be approximately 3.98 x 10^-21 Joules.
No, as energy is absorbed. When the reverse happens, the higher state to lower state, the electron is returning to its lower energy level ground state and energy is released in the form of a photon.