Output force is never greater than input force. There are losses associated with any system, and we have not found a way to get more out of a "thing" or "machine" or any other system than we put in.
With a lever, you can have a small input force, and on the other end, you can have a larger output force - or you can do it the other way. Quite often, however, the whole idea of such a lever is to be able to apply more force than we can manage with our weak muscles. But when you use a lever in the conventional way, you have to apply a force through a considerable distance to get the "concentrated" force at the other end.
In a Class 3 lever, the output force is always less than the input force. This is because the effort force (input force) is situated between the fulcrum and the resistance force (output force). Examples of Class 3 levers include tweezers and human arm muscles.
The formula for work exerted by each simple machine is: Lever: Work = Input force × Input distance = Output force × Output distance Inclined plane: Work = Input force × Input distance = Output force × Output distance Pulley: Work = Input force × Input distance = Output force × Output distance Wheel and axle: Work = Input force × Input radius = Output force × Output radius Wedge: Work = Input force × Input distance = Output force × Output distance Screw: Work = Input force × Input distance = Output force × Output distance
The output force is always less than the input force in a third-class lever because the input force is applied closer to the fulcrum than the output force. This configuration allows for greater speed and range of motion, but at the cost of reduced mechanical advantage.
In a closed system in the "real world" in which we live, there are losses associated with friction and other actions. These forces "take energy" from the system between its input and output. When we apply force to the imput of a system, some is lost as the force is transferred through that system. That means that the output force we observe will always be a bit less than the input force. A transmission in a vehicle is a classic example of the idea that there are losses between the input and the output of a system. The input from the engine will always be a bit greater than the output at the tailshaft (or axles for a transaxle) due to losses within the transmission.
A second-class lever. In this type of lever, the output force is always smaller than the input force, but the trade-off is that the output force moves a greater distance than the input force. Examples of second-class levers include wheelbarrows and nutcrackers.
In a Class 3 lever, the output force is always less than the input force. This is because the effort force (input force) is situated between the fulcrum and the resistance force (output force). Examples of Class 3 levers include tweezers and human arm muscles.
The formula for work exerted by each simple machine is: Lever: Work = Input force × Input distance = Output force × Output distance Inclined plane: Work = Input force × Input distance = Output force × Output distance Pulley: Work = Input force × Input distance = Output force × Output distance Wheel and axle: Work = Input force × Input radius = Output force × Output radius Wedge: Work = Input force × Input distance = Output force × Output distance Screw: Work = Input force × Input distance = Output force × Output distance
The output force is always less than the input force in a third-class lever because the input force is applied closer to the fulcrum than the output force. This configuration allows for greater speed and range of motion, but at the cost of reduced mechanical advantage.
In a closed system in the "real world" in which we live, there are losses associated with friction and other actions. These forces "take energy" from the system between its input and output. When we apply force to the imput of a system, some is lost as the force is transferred through that system. That means that the output force we observe will always be a bit less than the input force. A transmission in a vehicle is a classic example of the idea that there are losses between the input and the output of a system. The input from the engine will always be a bit greater than the output at the tailshaft (or axles for a transaxle) due to losses within the transmission.
An output force is the force that is exerted from the input force to create motion of the resisting object. the input force can be less or more then the output force
Because the output distance is always greaterthan the input distance,and the product of (force) x (distance) is nearly the same on both ends.
Input and output are shown on a force diagram by the human being the input force and the load force being the output force. When you divide output force by input force, you get the mechanical advantage of a lever.
A second-class lever. In this type of lever, the output force is always smaller than the input force, but the trade-off is that the output force moves a greater distance than the input force. Examples of second-class levers include wheelbarrows and nutcrackers.
An output force is the force that is exerted from the input force to create motion of the resisting object. the input force can be less or more then the output force
The difference between and input force and an output force is that an output force is force exerted by a machine, and an input force is force exerted on a machine.
To calculate input force, divide the output force by the mechanical advantage of the machine or system. Input force = Output force / Mechanical advantage. The output force is the force exerted by the machine, while the input force is the force applied to the machine.
Just divide the output force by the input force.Just divide the output force by the input force.Just divide the output force by the input force.Just divide the output force by the input force.