In a parallel circuit, each branch has its own current path, allowing the total current to be the sum of the currents in each branch. This is why it is known as current magnification. However, at resonance, the impedance in the circuit is at its minimum, causing the total current in the circuit to decrease. This does not change the fact that individual branches can still have higher currents than in a series circuit due to the unique current paths in a parallel arrangement.
Parallel circuit
a parallel circuit has 2 or more paths.a series circuit has 1 path.a parallel circuit is better for homes and school
in a parallel circuit, current get divided among the parallel branches in a manner so that the product of current and the resistance of each branch becomes same. The sum of the current in each branch is equal to the total current of the circuit.
In a parallel circuit, the hypothesis is that when components are connected in parallel, the total current flowing into the junction equals the total current flowing out. Essentially, the hypothesis states that the total current remains constant regardless of the number of parallel paths.
The current that flows from and back to the power supply in a parallel circuit is called branch current. Each branch in a parallel circuit has its own current flow that combines to form the total current drawn from the power supply.
very low current
because at resonance frequency in LRC parallel circuit,impedance is high, so it minimize the current. thus we say its a rejector circuit .
As a parallel resonance circuit only functions on resonant frequency, this type of circuit is also known as an Rejecter Circuit because at resonance, the impedance of the circuit is at its maximum thereby suppressing or rejecting the current whose frequency is equal to its resonant frequency.
Inside the circuit loop between the inductor and capacitor the current will be at maximum. Outside the circuit the current through the LC tank circuit will be at minimum. It depends on where you are measuring it.
Series resonant circuits have their lowest impedance at the resonant frequency. Parallel resonant circuits have their highest impedance at the resonant frequency. This characteristic is exploited in the design of filters, oscillators and other circuits.
in series you XL, voltage leads the current, and in Parallel current leads the voltage. so your answer should reflect on this theory.
For a particular frequency if the current or the voltage of the circuit is Maximum or Minimum then that circuit is said to be in resonance .
THE PARALLEL rlc CIRCUIT IS CALLED A REJECTOR CIRCUIT BECAUSE IT REJECTS DOWN THE CURRENT. THE REASON IS AT RESONANCE THE IMPEDENCE OF THE CAPACITOR BECOMES EQUAL TO THAT OF THE INDUCTOR SO NO CURRENT FLOWS. AT LOW FREQUENCY THE CAPACITIVE REACTANCE IS LOW SO ALL THE CURRENT FLOWS THROUGH THE INDUCTOR AND WHEN THE FREQUENCY IS HIGH ALL THE CURRENT WILL FLOW THROUGH THE CAPACITOR BECAUSE AT THAT POINT THE REACTANCE OF THE CAPACITOR IS LOW. SO WE OBTAIN A V-SHAPED GRAPH WITH THE PEAK OF V INDICATING THE REJECTION OF CURRENT IN PARALLEL R-L-C CIRCUIT CIRCUIT,AT RESONANCE,IMPEDANCE IS MAXIMUM AND CURRENT IS MINIMUM.HENCE, SUCH A CIRCUIT WHEN USED IN RADIO STATIONS IS KNOWN AS REJECTOR CIRCUIT BECAUSE IT REJECTS OR TAKES MINIMUM CURRENT OF THAT DESIRED FREQUENCY TO WHICH IT RESONATES.(THIS RESONANCE IS OFTEN REFERRED TO AS CURRENT RESONANCE BECAUSE THE CURRENT CIRCULATING BETWEEN THE TWO BRANCHES IS MANY TIMES GREATER THAN THE LINE CURRENT TAKEN FROM THE SUPPLY.THE PHENOMENON OF PARALLEL RESONANCE IS OF GREAT PRACTICAL IMPORTANCE BECAUSE IT FORMS THE BASIS OF TUNED CIRCUITS IN ELECTRONICS.)A PARALLEL R-L-C CIRCUIT HAS THE PROPERTY OF SELECTIVITY I.E.IT CAN SELECT THE DESIRED FREQUENCY FOR AMPLIFICATION OUT OF A LARGE NUMBER OF FREQUENCIES SIMULTANEOUSLY IMPRESSED UPON IT.FOR INSTANCE IF A MIXTURE OF FREQUENCIES INCLUDING RESONANT FREQUENCY IS FED TO THE INPUT THEN MAXIMUM AMPLIFICATION OCCURS FOR THE RESONANT FREQUENCY.FOR ALL OTHER FREQUENCIES ,THE CIRCUIT OFFERS VERY LOW IMPEDANCE AND HENCE THESE ARE AMPLIFIED TO A LESSER EXTENT AND MAY BE THOUGHT AS REJECTED BY THE CIRCUIT.
Parallel circuit
A circuit that has more than one path for the current to flow is a parallel circuit. The circuit must have two or more paths to be considered parallel. A circuit that has only one current path through multiple components is a series circuit.
IN A SERIES RLC CIRCUIT XL=XC.THEREFORE, IMPEDANCE Z IS MINIMUM AND Z=R.SINCE THE IMPEDANCE IS MINIMUM,CURRENT IN THE CIRCUIT WILL BE MAXIMUM. XL=XC MULTIPLYING BY MAX. CURRENT Io (AT RESONANCE) ON BOTH SIDES, WE GET, IoXL=IoXC I.E. Vlo=Vlc(POTENTIAL DIFFERENCE ACROSS INDUCTANCE IS EQUAL TO THE POTENTIAL DIFFERENCE ACROSS CAPACITANCE AND BEING EQUAL AND OPPOSITE THEY CANCEL EACH OTHER.)SINCE Io IS MAXIMUM,Vlo AND Vco WILL ALSO BE MAXIMUM.THUS,VOLTAGE MAGNIFICATION TAKES PLACE DURING RESONANCE.HENCE,IT IS ALSO REFERRED TO AS VOLTAGE MAGNIFICATION CIRCUIT.
No. The current in a series circuit is the same everywhere. The voltage across a parallel circuit is the same.