Scientists must carefully set the right orbital speed for a satellite that will be orbiting Earth, so that it will orbit correctly. The wrong speed will have the satellite move too fast, or too slow, skewing information and possibly causing the satellite to fall out of orbit and back to the planet's surface.
Satellite orbital spacing refers to the distance between different satellites in orbit around the Earth. This spacing is carefully planned to prevent collisions and to optimize coverage, communication, and other functions of the satellite network. Satellite operators coordinate with each other and regulatory bodies to ensure safe and efficient use of orbital space.
Doubling the mass of a satellite would result in no change in its orbital velocity. This is because the orbital velocity of a satellite only depends on the mass of the planet it is orbiting and the radius of its orbit, but not on the satellite's own mass.
870 km is its altitude according to NASA (answred bt divyansh tiwari)
You can calculate this with Kepler's Third Law. "The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit." This is valid for other orbiting objects; in this case you can replace "planet" with "satellite". Just assume, for simplicity, that the satellite orbits Earth in a circular orbit - in this case, the "semi-major axis" is equal to the distance from Earth's center. For your calculations, remember also that if the radius is doubled, the total distance the satellite travels is also doubled.
The "Big Grass Field" on an orbiting satellite is often whimsically referred to as "The Cosmic Pasture" in the realm of orbiting satellite algebra. This playful term captures the vast expanse of space, likening it to a field where celestial bodies graze in the grand tapestry of the universe. It adds a touch of flair to the otherwise technical discussion of orbital mechanics!
An orbit is the path that a celestial body follows around another body in space, such as a planet orbiting a star. An orbital, on the other hand, refers to the specific path or trajectory of an individual object within that larger orbit, such as a satellite orbiting Earth. In essence, an orbit is the general path, while an orbital is the specific path within that orbit.
The Roche limit is the orbital distance at which a satellite with no tensile strength (a "liquid" satellite) will begin to be tidally torn apart by the body it is orbiting. A real satellite can pass well within its Roche limit before being torn apart.
The period of a satellite is the time it takes for the satellite to complete one orbit around its parent body, such as a planet or a star. It is typically measured in hours, days, or years depending on the size and speed of the satellite's orbit. The period is determined by the satellite's orbital velocity and the mass of the parent body it is orbiting.
The reflector piece of a Dish satellite is curved in order to receive the proper signals from the orbiting satellites in space (also known as orbital locations). In order to view a specific satellite channel, each Dish reflector is designed with a different curvature.
A geostationary satellite is an earth-orbiting satellite, placed at an altitude of approximately 35,800 kilometers (22,300 miles) directly over the equator, that revolves in the same direction the earth rotates (west to east). A geosynchronous satellite is a satellite whose orbital track on the Earth repeats regularly over points on the Earth over time.
The orbital speed would be approximately 7.63 km/s and the period would be approximately 95.59 minutes for a satellite orbiting Earth at an altitude of 1.44 x 10^3 m. These values can be calculated using the formula for orbital speed (v = √(GM/r)) and the formula for orbital period (T = 2π√(r^3/GM)), where G is the gravitational constant, M is the mass of Earth, and r is the altitude of the satellite above Earth's surface.
it affect the path and orbital velocity of satellite due to gravitation pull