There is an example of a LHLD 5000H diagram on this website: atelier-drachenhaus.de/timing-diagram-8085. This will provide an idea of how to draw the diagram.
Refer http://wiki.answers.com/Q/How_to_draw_timing_diagram_for_8085_microprocessor_instruction
The OUT instruction on the 8085 uses 10 T cycles, 3 for opcode fetch, 1 for opcode decode, 3 for port address fetch, and 3 for port data store. Any wait states encountered are above and beyond that.
There is no exit instruction in the 8085. Do you mean return, as in from a function or interrupt? If so, the instruction is RET.
Not in the 8085.
In the 8085 microprocessor, the opcode fetch machine cycle is not sufficient on its own for executing the MOV MA instruction. While the opcode fetch cycle is responsible for retrieving the instruction from memory, additional machine cycles are required to perform the data transfer or execution of the instruction. Specifically, the MOV MA instruction involves both an opcode fetch cycle and a memory access cycle to complete the operation. Therefore, multiple machine cycles are necessary for executing this instruction effectively.
There are 74 instructions in the 8085 microprocessor.
The timing diagram for the LDA (Load Accumulator Direct) instruction in the 8085 microprocessor involves several key phases. Initially, the opcode is fetched from memory, which takes 4 clock cycles. Next, the address of the data to be loaded into the accumulator is specified in the next two cycles, followed by another two cycles to read the data from the specified memory location into the accumulator. The entire process typically takes 7 machine cycles, including the necessary memory access time.
MUL is not an 8085 instruction.
timing
Timing Diagram is a graphical representation. It represents the execution time taken by each instruction in a graphical format. The execution time is represented in T-states.Instruction Cycle:The time required to execute an instruction is called instruction cycle.Machine Cycle:The time required to access the memory or input/output devices is called machine cycle.T-State:The machine cycle and instruction cycle takes multiple clock periods.A portion of an operation carried out in one system clock period is called as T-state.MACHINE CYCLES OF 8085:The 8085 microprocessor has 5 (seven) basic machine cycles. They areOpcode fetch cycle (4T)Memory read cycle (3 T)Memory write cycle (3 T)I/O read cycle (3 T)I/O write cycle (3 T)Each instruction of the 8085 processor consists of one to five machine cycles, i.e., when the 8085 processor executes an instruction, it will execute some of the machine cycles in a specific order.The processor takes a definite time to execute the machine cycles. The time taken by the processor to execute a machine cycle is expressed in T-states.One T-state is equal to the time period of the internal clock signal of the processor.The T-state starts at the falling edge of a clock.
The INTA- (Interrupt Acknowledge) pin on the 8085 is an acknowledge of the INTR (Interrupt Request). It has the same timing as RD-, and external hardware is expected to provide an opcode, usually a CALL or an RST instruction, in response to INTA-.
8086 has two blocks Bus Interfacing Unit(BIU) and Execution Unit(EU).The BIU performs all bus operations such as instruction fetching, reading and writing operands for memory and calculating the addresses of the memory operands. The instruction bytes are transferred to the instruction queue.EU executes instructions from the instruction system byte queue.Both units operate asynchronously to give the 8086 an overlapping instruction fetch and execution mechanism which is called as Pipelining. This results in efficient use of the system bus and system performance.BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder.EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register,Flag register.