answersLogoWhite

0


Best Answer

Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations including hardware engineering, power electronics, electromagnetics and waves, microwave engineering, nanotechnology, electrochemistry, renewable energies, mechatronics, and electrical materials science.Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practising engineers may have professional certification and be members of a professional body or an international standards organization. These include the International Electrotechnical Commission (IEC), the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (IET) (formerly the IEE). Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from circuit theory to the management skills of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to sophisticated design and manufacturing software. Electricity has been a subject of scientific interest since at least the early 17th century. William Gilbert was a prominent early electrical scientist, and was the first to draw a clear distinction between magnetism and static electricity. He is credited with establishing the term "electricity". He also designed the versorium: a device that detects the presence of statically charged objects. In 1762 Swedish professor Johan Wilcke invented a device later named electrophorus that produced a static electric charge. By 1800 Alessandro Volta had developed the voltaic pile, a forerunner of the electric battery. In the 19th century, research into the subject started to intensify. Notable developments in this century include the work of Hans Christian Ørsted who discovered in 1820 that an electric current produces a magnetic field that will deflect a compass needle, of William Sturgeon who, in 1825 invented the electromagnet, of Joseph Henry and Edward Davy who invented the electrical relay in 1835, of Georg Ohm, who in 1827 quantified the relationship between the electric current and potential difference in a conductor, of Michael Faraday (the discoverer of electromagnetic induction in 1831), and of James Clerk Maxwell, who in 1873 published a unified theory of electricity and magnetism in his treatise Electricity and Magnetism.In 1782 Georges-Louis Le Sage developed and presented in Berlin probably the world's first form of electric telegraphy, using 24 different wires, one for each letter of the alphabet. This telegraph connected two rooms. It was an electrostatic telegraph that moved gold leaf through electrical conduction. In 1795, Francisco Salva Campillo proposed an electrostatic telegraph system. Between 1803–1804, he worked on electrical telegraphy and in 1804, he presented his report at the Royal Academy of Natural Sciences and Arts of Barcelona. Salva's electrolyte telegraph system was very innovative though it was greatly influenced by and based upon two new discoveries made in Europe in 1800 – Alessandro Volta's electric battery for generating an electric current and William Nicholson and Anthony Carlyle's electrolysis of water. Electrical telegraphy may be considered the first example of electrical engineering. Electrical engineering became a profession in the later 19th century. Practitioners had created a global electric telegraph network, and the first professional electrical engineering institutions were founded in the UK and USA to support the new discipline. Francis Ronalds created an electric telegraph system in 1816 and documented his vision of how the world could be transformed by electricity. Over 50 years later, he joined the new Society of Telegraph Engineers (soon to be renamed the Institution of Electrical Engineers) where he was regarded by other members as the first of their cohort. By the end of the 19th century, the world had been forever changed by the rapid communication made possible by the engineering development of land-lines, submarine cables, and, from about 1890, wireless telegraphy. Practical applications and advances in such fields created an increasing need for standardised units of measure. They led to the international standardization of the units volt, ampere, coulomb, ohm, farad, and henry. This was achieved at an international conference in Chicago in 1893. The publication of these standards formed the basis of future advances in standardisation in various industries, and in many countries, the definitions were immediately recognized in relevant legislation.During these years, the study of electricity was largely considered to be a subfield of physics since the early electrical technology was considered electromechanical in nature. The Technische Universität Darmstadt founded the world's first department of electrical engineering in 1882 and introduced the first degree course in electrical engineering in 1883. The first electrical engineering degree program in the United States was started at Massachusetts Institute of Technology (MIT) in the physics department under Professor Charles Cross, though it was Cornell University to produce the world's first electrical engineering graduates in 1885. The first course in electrical engineering was taught in 1883 in Cornell's Sibley College of Mechanical Engineering and Mechanic Arts. It was not until about 1885 that Cornell President Andrew Dickson White established the first Department of Electrical Engineering in the United States. In the same year, University College London founded the first chair of electrical engineering in Great Britain. Professor Mendell P. Weinbach at University of Missouri soon followed suit by establishing the electrical engineering department in 1886. Afterwards, universities and institutes of technology gradually started to offer electrical engineering programs to their students all over the world. During these decades use of electrical engineering increased dramatically. In 1882, Thomas Edison switched on the world's first large-scale electric power network that provided 110 volts — direct current (DC) — to 59 customers on Manhattan Island in New York City. In 1884, Sir Charles Parsons invented the steam turbine allowing for more efficient electric power generation. Alternating current, with its ability to transmit power more efficiently over long distances via the use of transformers, developed rapidly in the 1880s and 1890s with transformer designs by Károly Zipernowsky, Ottó Bláthy and Miksa Déri (later called ZBD transformers), Lucien Gaulard, John Dixon Gibbs and William Stanley, Jr.. Practical AC motor designs including induction motors were independently invented by Galileo Ferraris and Nikola Tesla and further developed into a practical three-phase form by Mikhail Dolivo-Dobrovolsky and Charles Eugene Lancelot Brown. Charles Steinmetz and Oliver Heaviside contributed to the theoretical basis of alternating current engineering. The spread in the use of AC set off in the United States what has been called the war of the currents between a George Westinghouse backed AC system and a Thomas Edison backed DC power system, with AC being adopted as the overall standard. During the development of radio, many scientists and inventors contributed to radio technology and electronics. The mathematical work of James Clerk Maxwell during the 1850s had shown the relationship of different forms of electromagnetic radiation including the possibility of invisible airborne waves (later called "radio waves"). In his classic physics experiments of 1888, Heinrich Hertz proved Maxwell's theory by transmitting radio waves with a spark-gap transmitter, and detected them by using simple electrical devices. Other physicists experimented with these new waves and in the process developed devices for transmitting and detecting them. In 1895, Guglielmo Marconi began work on a way to adapt the known methods of transmitting and detecting these "Hertzian waves" into a purpose built commercial wireless telegraphic system. Early on, he sent wireless signals over a distance of one and a half miles. In December 1901, he sent wireless waves that were not affected by the curvature of the Earth. Marconi later transmitted the wireless signals across the Atlantic between Poldhu, Cornwall, and St. John's, Newfoundland, a distance of 2,100 miles (3,400 km).Millimetre wave communication was first investigated by Jagadish Chandra Bose during 1894–1896, when he reached an extremely high frequency of up to 60 GHz in his experiments. He also introduced the use of semiconductor junctions to detect radio waves, when he patented the radio crystal detector in 1901.In 1897, Karl Ferdinand Braun introduced the cathode ray tube as part of an oscilloscope, a crucial enabling technology for electronic television. John Fleming invented the first radio tube, the diode, in 1904. Two years later, Robert von Lieben and Lee De Forest independently developed the amplifier tube, called the triode.In 1920, Albert Hull developed the magnetron which would eventually lead to the development of the microwave oven in 1946 by Percy Spencer. In 1934, the British military began to make strides toward radar (which also uses the magnetron) under the direction of Dr Wimperis, culminating in the operation of the first radar station at Bawdsey in August 1936.In 1941, Konrad Zuse presented the Z3, the world's first fully functional and programmable computer using electromechanical parts. In 1943, Tommy Flowers designed and built the Colossus, the world's first fully functional, electronic, digital and programmable computer. In 1946, the ENIAC (Electronic Numerical Integrator and Computer) of John Presper Eckert and John Mauchly followed, beginning the computing era. The arithmetic performance of these machines allowed engineers to develop completely new technologies and achieve new objectives.In 1948 Claude Shannon publishes "A Mathematical Theory of Communication" which mathematically describes the passage of information with uncertainty (electrical noise). The first working transistor was a point-contact transistor invented by John Bardeen and Walter Houser Brattain while working under William Shockley at the Bell Telephone Laboratories (BTL) in 1947. They then invented the bipolar junction transistor in 1948. While early junction transistors were relatively bulky devices that were difficult to manufacture on a mass-production basis, they opened the door for more compact devices.The surface passivation process, which electrically stabilized silicon surfaces via thermal oxidation, was developed by Mohamed M. Atalla at BTL in 1957. This led to the development of the monolithic integrated circuit chip. The first integrated circuits were the hybrid integrated circuit invented by Jack Kilby at Texas Instruments in 1958 and the monolithic integrated circuit chip invented by Robert Noyce at Fairchild Semiconductor in 1959.The MOSFET (metal-oxide-semiconductor field-effect transistor, or MOS transistor) was invented by Mohamed Atalla and Dawon Kahng at BTL in 1959. It was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses. It revolutionized the electronics industry, becoming the most widely used electronic device in the world. The MOSFET is the basic element in most modern electronic equipment, and has been central to the electronics revolution, the microelectronics revolution, and the Digital Revolution. The MOSFET has thus been credited as the birth of modern electronics, and possibly the most important invention in electronics.The MOSFET made it possible to build high-density integrated circuit chips. Atalla first proposed the concept of the MOS integrated circuit (MOS IC) chip in 1960, followed by Kahng in 1961. The earliest experimental MOS IC chip to be fabricated was built by Fred Heiman and Steven Hofstein at RCA Laboratories in 1962. MOS technology enabled Moore's law, the doubling of transistors on an IC chip every two years, predicted by Gordon Moore in 1965. Silicon-gate MOS technology was developed by Federico Faggin at Fairchild in 1968. Since then, the MOSFET has been the basic building block of modern electronics. The mass-production of silicon MOSFETs and MOS integrated circuit chips, along with continuous MOSFET scaling miniaturization at an exponential pace (as predicted by Moore's law), has since led to revolutionary changes in technology, economy, culture and thinking.The Apollo program which culminated in landing astronauts on the Moon with Apollo 11 in 1969 was enabled by NASA's adoption of advances in semiconductor electronic technology, including MOSFETs in the Interplanetary Monitoring Platform (IMP) and silicon integrated circuit chips in the Apollo Guidance Computer (AGC).The development of MOS integrated circuit technology in the 1960s led to the invention of the microprocessor in the early 1970s. The first single-chip microprocessor was the Intel 4004, released in 1971. It began with the "Busicom Project" as Masatoshi Shima's three-chip CPU design in 1968, before Sharp's Tadashi Sasaki conceived of a single-chip CPU design, which he discussed with Busicom and Intel in 1968. The Intel 4004 was then designed and realized by Federico Faggin at Intel with his silicon-gate MOS technology, along with Intel's Marcian Hoff and Stanley Mazor and Busicom's Masatoshi Shima. The microprocessor led to the development of microcomputers and personal computers, and the microcomputer revolution. Electrical engineering has many subdisciplines, the most common of which are listed below. Although there are electrical engineers who focus exclusively on one of these subdisciplines, many deal with a combination of them. Sometimes certain fields, such as electronic engineering and computer engineering, are considered separate disciplines in their own right. Power engineering deals with the generation, transmission, and distribution of electricity as well as the design of a range of related devices. These include transformers, electric generators, electric motors, high voltage engineering, and power electronics. In many regions of the world, governments maintain an electrical network called a power grid that connects a variety of generators together with users of their energy. Users purchase electrical energy from the grid, avoiding the costly exercise of having to generate their own. Power engineers may work on the design and maintenance of the power grid as well as the power systems that connect to it. Such systems are called on-grid power systems and may supply the grid with additional power, draw power from the grid, or do both. Power engineers may also work on systems that do not connect to the grid, called off-grid power systems, which in some cases are preferable to on-grid systems. The future includes Satellite controlled power systems, with feedback in real time to prevent power surges and prevent blackouts. Control engineering focuses on the modeling of a diverse range of dynamic systems and the design of controllers that will cause these systems to behave in the desired manner. To implement such controllers, electrical engineers may use electronic circuits, digital signal processors, microcontrollers, and programmable logic controllers (PLCs). Control engineering has a wide range of applications from the flight and propulsion systems of commercial airliners to the cruise control present in many modern automobiles. It also plays an important role in industrial automation. Control engineers often utilize feedback when designing control systems. For example, in an automobile with cruise control the vehicle's speed is continuously monitored and fed back to the system which adjusts the motor's power output accordingly. Where there is regular feedback, control theory can be used to determine how the system responds to such feedback. Electrical engineers also work in robotics to design autonomous systems using control algorithms which interpret sensory feedback to control actuators that move robots such as autonomous vehicles, autonomous drones and others used in a variety of industries. Electronic engineering involves the design and testing of electronic circuits that use the properties of components such as resistors, capacitors, inductors, diodes, and transistors to achieve a particular functionality. The tuned circuit, which allows the user of a radio to filter out all but a single station, is just one example of such a circuit. Another example to research is a pneumatic signal conditioner. Prior to the Second World War, the subject was commonly known as radio engineering and basically was restricted to aspects of communications and radar, commercial radio, and early television. Later, in post-war years, as consumer devices began to be developed, the field grew to include modern television, audio systems, computers, and microprocessors. In the mid-to-late 1950s, the term radio engineering gradually gave way to the name electronic engineering. Before the invention of the integrated circuit in 1959, electronic circuits were constructed from discrete components that could be manipulated by humans. These discrete circuits consumed much space and power and were limited in speed, although they are still common in some applications. By contrast, integrated circuits packed a large number—often millions—of tiny electrical components, mainly transistors, into a small chip around the size of a coin. This allowed for the powerful computers and other electronic devices we see today. Microelectronics engineering deals with the design and microfabrication of very small electronic circuit components for use in an integrated circuit or sometimes for use on their own as a general electronic component. The most common microelectronic components are semiconductor transistors, although all main electronic components (resistors, capacitors etc.) can be created at a microscopic level. Nanoelectronics is the further scaling of devices down to nanometer levels. Modern devices are already in the nanometer regime, with below 100 nm processing having been standard since around 2002.Microelectronic components are created by chemically fabricating wafers of semiconductors such as silicon (at higher frequencies, compound semiconductors like gallium arsenide and indium phosphide) to obtain the desired transport of electronic charge and control of current. The field of microelectronics involves a significant amount of chemistry and material science and requires the electronic engineer working in the field to have a very good working knowledge of the effects of quantum mechanics. Signal processing deals with the analysis and manipulation of signals. Signals can be either analog, in which case the signal varies continuously according to the information, or digital, in which case the signal varies according to a series of discrete values representing the information. For analog signals, signal processing may involve the amplification and filtering of audio signals for audio equipment or the modulation and demodulation of signals for telecommunications. For digital signals, signal processing may involve the compression, error detection and error correction of digitally sampled signals.Signal Processing is a very mathematically oriented and intensive area forming the core of digital signal processing and it is rapidly expanding with new applications in every field of electrical engineering such as communications, control, radar, audio engineering, broadcast engineering, power electronics, and biomedical engineering as many already existing analog systems are replaced with their digital counterparts. Analog signal processing is still important in the design of many control systems. DSP processor ICs are found in many types of modern electronic devices, such as digital television sets, radios, Hi-Fi audio equipment, mobile phones, multimedia players, camcorders and digital cameras, automobile control systems, noise cancelling headphones, digital spectrum analyzers, missile guidance systems, radar systems, and telematics systems. In such products, DSP may be responsible for noise reduction, speech recognition or synthesis, encoding or decoding digital media, wirelessly transmitting or receiving data, triangulating position using GPS, and other kinds of image processing, video processing, audio processing, and speech processing. Telecommunications engineering focuses on the transmission of information across a communication channel such as a coax cable, optical fiber or free space. Transmissions across free space require information to be encoded in a carrier signal to shift the information to a carrier frequency suitable for transmission; this is known as modulation. Popular analog modulation techniques include amplitude modulation and frequency modulation. The choice of modulation affects the cost and performance of a system and these two factors must be balanced carefully by the engineer. Once the transmission characteristics of a system are determined, telecommunication engineers design the transmitters and receivers needed for such systems. These two are sometimes combined to form a two-way communication device known as a transceiver. A key consideration in the design of transmitters is their power consumption as this is closely related to their signal strength. Typically, if the power of the transmitted signal is insufficient once the signal arrives at the receiver's antenna(s), the information contained in the signal will be corrupted by noise. Instrumentation engineering deals with the design of devices to measure physical quantities such as pressure, flow, and temperature. The design of such instruments requires a good understanding of physics that often extends beyond electromagnetic theory. For example, flight instruments measure variables such as wind speed and altitude to enable pilots the control of aircraft analytically. Similarly, thermocouples use the Peltier-Seebeck effect to measure the temperature difference between two points

User Avatar

Dean Turcotte

Lvl 10
3y ago
This answer is:
User Avatar
More answers
User Avatar

Kenyatta Baumbach

Lvl 10
3y ago

inverse-square relation to the distance between them. The electromagnetic force is very strong, second only in strength to the strong interaction, but unlike that force it operates over all distances. In comparison with the much weaker gravitational force, the electromagnetic force pushing two electrons apart is 1042 times that of the gravitational attraction pulling them together.Study has shown that the origin of charge is from certain types of subatomic particles which have the property of electric charge. Electric charge gives rise to and interacts with the electromagnetic force, one of the four fundamental forces of nature. The most familiar carriers of electrical charge are the electron and proton. Experiment has shown charge to be a conserved quantity, that is, the net charge within an electrically isolated system will always remain constant regardless of any changes taking place within that system. Within the system, charge may be transferred between bodies, either by direct contact, or by passing along a conducting material, such as a wire. The informal term static electricity refers to the net presence (or 'imbalance') of charge on a body, usually caused when dissimilar materials are rubbed together, transferring charge from one to the other. The charge on electrons and protons is opposite in sign, hence an amount of charge may be expressed as being either negative or positive. By convention, the charge carried by electrons is deemed negative, and that by protons positive, a custom that originated with the work of Benjamin Franklin. The amount of charge is usually given the symbol Q and expressed in coulombs; each electron carries the same charge of approximately −1.6022×10−19 coulomb. The proton has a charge that is equal and opposite, and thus +1.6022×10−19 coulomb. Charge is possessed not just by matter, but also by antimatter, each antiparticle bearing an equal and opposite charge to its corresponding particle.Charge can be measured by a number of means, an early instrument being the gold-leaf electroscope, which although still in use for classroom demonstrations, has been superseded by the electronic electrometer. The movement of electric charge is known as an electric current, the intensity of which is usually measured in amperes. Current can consist of any moving charged particles; most commonly these are electrons, but any charge in motion constitutes a current. Electric current can flow through some things, electrical conductors, but will not flow through an electrical insulator.By historical convention, a positive current is defined as having the same direction of flow as any positive charge it contains, or to flow from the most positive part of a circuit to the most negative part. Current defined in this manner is called conventional current. The motion of negatively charged electrons around an electric circuit, one of the most familiar forms of current, is thus deemed positive in the opposite direction to that of the electrons. However, depending on the conditions, an electric current can consist of a flow of charged particles in either direction, or even in both directions at once. The positive-to-negative convention is widely used to simplify this situation. The process by which electric current passes through a material is termed electrical conduction, and its nature varies with that of the charged particles and the material through which they are travelling. Examples of electric currents include metallic conduction, where electrons flow through a conductor such as metal, and electrolysis, where ions (charged atoms) flow through liquids, or through plasmas such as electrical sparks. While the particles themselves can move quite slowly, sometimes with an average drift velocity only fractions of a millimetre per second, the electric field that drives them itself propagates at close to the speed of light, enabling electrical signals to pass rapidly along wires.Current causes several observable effects, which historically were the means of recognising its presence. That water could be decomposed by the current from a voltaic pile was discovered by Nicholson and Carlisle in 1800, a process now known as electrolysis. Their work was greatly expanded upon by Michael Faraday in 1833. Current through a resistance causes localised heating, an effect James Prescott Joule studied mathematically in 1840. One of the most important discoveries relating to current was made accidentally by Hans Christian Ørsted in 1820, when, while preparing a lecture, he witnessed the current in a wire disturbing the needle of a magnetic compass. He had discovered electromagnetism, a fundamental interaction between electricity and magnetics. The level of electromagnetic emissions generated by electric arcing is high enough to produce electromagnetic interference, which can be detrimental to the workings of adjacent equipment.In engineering or household applications, current is often described as being either direct current (DC) or alternating current (AC). These terms refer to how the current varies in time. Direct current, as produced by example from a battery and required by most electronic devices, is a unidirectional flow from the positive part of a circuit to the negative. If, as is most common, this flow is carried by electrons, they will be travelling in the opposite direction. Alternating current is any current that reverses direction repeatedly; almost always this takes the form of a sine wave. Alternating current thus pulses back and forth within a conductor without the charge moving any net distance over time. The time-averaged value of an alternating current is zero, but it delivers energy in first one direction, and then the reverse. Alternating current is affected by electrical properties that are not observed under steady state direct current, such as inductance and capacitance. These properties however can become important when circuitry is subjected to transients, such as when first energised. The concept of the electric field was introduced by Michael Faraday. An electric field is created by a charged body in the space that surrounds it, and results in a force exerted on any other charges placed within the field. The electric field acts between two charges in a similar manner to the way that the gravitational field acts between two masses, and like it, extends towards infinity and shows an inverse square relationship with distance. However, there is an important difference. Gravity always acts in attraction, drawing two masses together, while the electric field can result in either attraction or repulsion. Since large bodies such as planets generally carry no net charge, the electric field at a distance is usually zero. Thus gravity is the dominant force at distance in the universe, despite being much weaker. An electric field generally varies in space, and its strength at any one point is defined as the force (per unit charge) that would be felt by a stationary, negligible charge if placed at that point. The conceptual charge, termed a 'test charge', must be vanishingly small to prevent its own electric field disturbing the main field and must also be stationary to prevent the effect of magnetic fields. As the electric field is defined in terms of force, and force is a vector, having both magnitude and direction, so it follows that an electric field is a vector field.The study of electric fields created by stationary charges is called electrostatics. The field may be visualised by a set of imaginary lines whose direction at any point is the same as that of the field. This concept was introduced by Faraday, whose term 'lines of force' still sometimes sees use. The field lines are the paths that a point positive charge would seek to make as it was forced to move within the field; they are however an imaginary concept with no physical existence, and the field permeates all the intervening space between the lines. Field lines emanating from stationary charges have several key properties: first, that they originate at positive charges and terminate at negative charges; second, that they must enter any good conductor at right angles, and third, that they may never cross nor close in on themselves.A hollow conducting body carries all its charge on its outer surface. The field is therefore zero at all places inside the body. This is the operating principal of the Faraday cage, a conducting metal shell which isolates its interior from outside electrical effects. The principles of electrostatics are important when designing items of high-voltage equipment. There is a finite limit to the electric field strength that may be withstood by any medium. Beyond this point, electrical breakdown occurs and an electric arc causes flashover between the charged parts. Air, for example, tends to arc across small gaps at electric field strengths which exceed 30 kV per centimetre. Over larger gaps, its breakdown strength is weaker, perhaps 1 kV per centimetre. The most visible natural occurrence of this is lightning, caused when charge becomes separated in the clouds by rising columns of air, and raises the electric field in the air to greater than it can withstand. The voltage of a large lightning cloud may be as high as 100 MV and have discharge energies as great as 250 kWh.The field strength is greatly affected by nearby conducting objects, and it is particularly intense when it is forced to curve around sharply pointed objects. This principle is exploited in the lightning conductor, the sharp spike of which acts to encourage the lightning stroke to develop there, rather than to the building it serves to protect The concept of electric potential is closely linked to that of the electric field. A small charge placed within an electric field experiences a force, and to have brought that charge to that point against the force requires work. The electric potential at any point is defined as the energy required to bring a unit test charge from an infinite distance slowly to that point. It is usually measured in volts, and one volt is the potential for which one joule of work must be expended to bring a charge of one coulomb from infinity. This definition of potential, while formal, has little practical application, and a more useful concept is that of electric potential difference, and is the energy required to move a unit charge between two specified points. An electric field has the special property that it is conservative, which means that the path taken by the test charge is irrelevant: all paths between two specified points expend the same energy, and thus a unique value for potential difference may be stated. The volt is so strongly identified as the unit of choice for measurement and description of electric potential difference that the term voltage sees greater everyday usage. For practical purposes, it is useful to define a common reference point to which potentials may be expressed and compared. While this could be at infinity, a much more useful reference is the Earth itself, which is assumed to be at the same potential everywhere. This reference point naturally takes the name earth or ground. Earth is assumed to be an infinite source of equal amounts of positive and negative charge, and is therefore electrically uncharged—and unchargeable.Electric potential is a scalar quantity, that is, it has only magnitude and not direction. It may be viewed as analogous to height: just as a released object will fall through a difference in heights caused by a gravitational field, so a charge will 'fall' across the voltage caused by an electric field. As relief maps show contour lines marking points of equal height, a set of lines marking points of equal potential (known as equipotentials) may be drawn around an electrostatically charged object. The equipotentials cross all lines of force at right angles. They must also lie parallel to a conductor's surface, otherwise this would produce a force that will move the charge carriers to even the potential of the surface. The electric field was formally defined as the force exerted per unit charge, but the concept of potential allows for a more useful and equivalent definition: the electric field is the local gradient of the electric potential. Usually expressed in volts per metre, the vector direction of the field is the line of greatest slope of potential, and where the equipotentials lie closest together. Ørsted's discovery in 1821 that a magnetic field existed around all sides of a wire carrying an electric current indicated that there was a direct relationship between electricity and magnetism. Moreover, the interaction seemed different from gravitational and electrostatic forces, the two forces of nature then known. The force on the compass needle did not direct it to or away from the current-carrying wire, but acted at right angles to it. Ørsted's words were that "the electric conflict acts in a revolving manner." The force also depended on the direction of the current, for if the flow was reversed, then the force did too.Ørsted did not fully understand his discovery, but he observed the effect was reciprocal: a current exerts a force on a magnet, and a magnetic field exerts a force on a current. The phenomenon was further investigated by Ampère, who discovered that two parallel current-carrying wires exerted a force upon each other: two wires conducting currents in the same direction are attracted to each other, while wires containing currents in opposite directions are forced apart. The interaction is mediated by the magnetic field each current produces and forms the basis for the international definition of the ampere. This relationship between magnetic fields and currents is extremely important, for it led to Michael Faraday's invention of the electric motor in 1821. Faraday's homopolar motor consisted of a permanent magnet sitting in a pool of Mercury. A current was allowed through a wire suspended from a pivot above the magnet and dipped into the mercury. The magnet exerted a tangential force on the wire, making it circle around the magnet for as long as the current was maintained.Experimentation by Faraday in 1831 revealed that a wire moving perpendicular to a magnetic field developed a potential difference between its ends. Further analysis of this process, known as electromagnetic induction, enabled him to state the principle, now known as Faraday's law of induction, that the potential difference induced in a closed circuit is proportional to the rate of change of magnetic flux through the loop. Exploitation of this discovery enabled him to invent the first electrical generator in 1831, in which he converted the mechanical energy of a rotating copper disc to electrical energy. Faraday's disc was inefficient and of no use as a practical generator, but it showed the possibility of generating electric power using magnetism, a possibility that would be taken up by those that followed on from his work. The ability of chemical reactions to produce electricity, and conversely the ability of electricity to drive chemical reactions has a wide array of uses. Electrochemistry has always been an important part of electricity. From the initial invention of the Voltaic pile, electrochemical cells have evolved into the many different types of batteries, electroplating and electrolysis cells. Aluminium is produced in vast quantities this way, and many portable devices are electrically powered using rechargeable cells. An electric circuit is an interconnection of electric components such that electric charge is made to flow along a closed path (a circuit), usually to perform some useful task. The components in an electric circuit can take many forms, which can include elements such as resistors, capacitors, switches, Transformers and electronics. Electronic circuits contain active components, usually semiconductors, and typically exhibit non-linear behaviour, requiring complex analysis. The simplest electric components are those that are termed passive and linear: while they may temporarily store energy, they contain no sources of it, and exhibit linear responses to stimuli.The resistor is perhaps the simplest of passive circuit elements: as its name suggests, it resists the current through it, dissipating its energy as heat. The resistance is a consequence of the motion of charge through a conductor: in metals, for example, resistance is primarily due to collisions between electrons and ions. Ohm's law is a basic law of circuit theory, stating that the current passing through a resistance is directly proportional to the potential difference across it. The resistance of most materials is relatively constant over a range of temperatures and currents; materials under these conditions are known as 'ohmic'. The ohm, the unit of resistance, was named in honour of Georg Ohm, and is symbolised by the Greek letter Ω. 1 Ω is the resistance that will produce a potential difference of one volt in response to a current of one amp.The capacitor is a development of the Leyden jar and is a device that can store charge, and thereby storing electrical energy in the resulting field. It consists of two conducting plates separated by a thin insulating dielectric layer; in practice, thin metal foils are coiled together, increasing the surface area per unit volume and therefore the capacitance. The unit of capacitance is the farad, named after Michael Faraday, and given the symbol F: one farad is the capacitance that develops a potential difference of one volt when it stores a charge of one coulomb. A capacitor connected to a voltage supply initially causes a current as it accumulates charge; this current will however decay in time as the capacitor fills, eventually falling to zero. A capacitor will therefore not permit a steady state current, but instead blocks it.The inductor is a conductor, usually a coil of wire, that stores energy in a magnetic field in response to the current through it. When the current changes, the magnetic field does too, inducing a voltage between the ends of the conductor. The induced voltage is proportional to the time rate of change of the current. The constant of proportionality is termed the inductance. The unit of inductance is the henry, named after Joseph Henry, a contemporary of Faraday. One henry is the inductance that will induce a potential difference of one volt if the current through it changes at a rate of one ampere per second

This answer is:
User Avatar

User Avatar

Wiki User

10y ago

Single phase induction motor

Three phase induction motor

Use one phase supply

Use three phase supply

The stator is one phase winding

The stator is three phase winding

Single phase does not provide a rotating field for starting . Starting is usually to split the single phase into two phases separated by 90 degrees so not self starting motor .

Self starting motor

Not more than 5 HP in size

More than 5 HP size

Used in applications that do not need high starting torque .

Used in applications that need a high starting torque .

easy to repair and maintain

Hard to repair and maintain

small power rating

High power rating

- The rotor is same as three phase induction motor .

- Simple in construction, reliable and economical as compared to three phase induction motor .

- The efficiency of single phase induction motors is less as compare it to the three phase induction motor .

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

The sine waves of a 3 phase power supply are 120 degrees apart, in a single phase supply they are 180 degrees apart. Three phase motors also consume almost half the amperage of the same HP single phase. Simply put, there are three "power" wires for the 3ph compared to the two for 1ph. 3ph induction motors do not use capacitors or separate windings to get them turning as 1ph motors do, therefore less separate/moving parts to contend with.

This answer is:
User Avatar

User Avatar

Wiki User

12y ago

AC motors regardless of single phase or three phase works on the principle of rotating magnetic fields, a single phase motor doesnot have the capability to it on its own so it uses extra circuitry that produces the necessary rotating field for it to work, whereas in the three phase motor it doesnot require any extra circuitry, the 120 phase difference between the phase naturally produces the rotating magnetic field required for the operation  

This answer is:
User Avatar

User Avatar

Wiki User

13y ago

A single phase motor with the same horsepower as a 3 phase motor will be much larger than the 3 phase motor.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How is a three phase motor different from a single phase motor?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

What is the weight of a single phase motor vs a three phase motor having same power?

They will not be very different.


What is the difference between a one phase and a three phase motor. And if a three phase motor is given a single phase supply will it run or not?

The difference between a single phase and a three phase motor is the amount of power conductors that feed the device. As to the other part of the question a three phase motor will not start or run on single phase. The phase angles on three phase are 120 degrees apart on a single phase system they are 180 degrees apart.


Can you replace a three phase motor 3 Hp RPM 1420 with a single phase motor for a planer?

Probably not. The single phase three horse power motor will be much larger in physical size than its three phase counterpart, and will probably not fit.


How do you wire 3 phase power to 1 phase power diagram?

In an emergency and for a short period of time you can single phase a three phase motor but the motor will be loud, have terrible power characteristics and depending upon the use will burn up rather quickly. You should never try to run this in other than a life threatening emergency situation, the motors are not designed for it. Normally you don't. <<>> A three phase motor will not start on single phase. If the motor was started on three phase and loses a phase, it will stay running at a lower percentage of efficiency. Now a days the motor protection will not let a three phase motor run in a single phasing condition. All three phase legs of the motor are monitored and in a single phase condition the other two legs of the motor draw a higher current. This higher current is sensed by the motor's overload heaters in the motor's contactor and take the motor off line by opening the motor contactor. Now to the question, any two legs of a three phase system in electrical terms is known as single phase. As long as the three phase voltage matches the voltage needed in the single phase power diagram it can be connected to operate single phase equipment.


Why is it called single phasing?

On a three phase system you have incorporated into it a potential of three single phase systems. A-B, B-C, C-A. Any two legs of a three phase system can be used as a single phase load. On a three phase system, be it a motor or a service, if one of the legs drops out for what ever reason, the remaining two legs are known as single phase. This is how the terminology became single phasing. As a side note a motor will run in a single phase condition, it just will not start. In motor control, a single phase condition is prevented by the use of overload heaters on all three voltage legs.

Related questions

What is the weight of a single phase motor vs a three phase motor having same power?

They will not be very different.


What is the difference between a one phase and a three phase motor. And if a three phase motor is given a single phase supply will it run or not?

The difference between a single phase and a three phase motor is the amount of power conductors that feed the device. As to the other part of the question a three phase motor will not start or run on single phase. The phase angles on three phase are 120 degrees apart on a single phase system they are 180 degrees apart.


How do you use a one phase motor in place of a three phase motor?

To use a single/one phase motor instead of a three phase motor is possible if you have a three phase power supply as you will only need to tap one of the three phases together with neutral and an earthwire, however to use a three phase motor instead of a single phase will require the provision of three phase power supply.


How do you start a three phase motor to a single phase power supply?

You don't. A three phase motor will not start unless it is connected to a three phase supply.


Can you replace a three phase motor 3 Hp RPM 1420 with a single phase motor for a planer?

Probably not. The single phase three horse power motor will be much larger in physical size than its three phase counterpart, and will probably not fit.


How will you understand whether a motor is single phase or three phase?

by no of terminals.


How is slip in three phase induction motor different from slip in single phase induction motor?

They are the same thing: (Nsync - N)/Nsync, or 1 - N/Nsync


Is 380 volts electric motor a single phase or 3 Phase?

It is probably a three phase 50 Hz motor.


How do you wire 3 phase power to 1 phase power diagram?

In an emergency and for a short period of time you can single phase a three phase motor but the motor will be loud, have terrible power characteristics and depending upon the use will burn up rather quickly. You should never try to run this in other than a life threatening emergency situation, the motors are not designed for it. Normally you don't. <<>> A three phase motor will not start on single phase. If the motor was started on three phase and loses a phase, it will stay running at a lower percentage of efficiency. Now a days the motor protection will not let a three phase motor run in a single phasing condition. All three phase legs of the motor are monitored and in a single phase condition the other two legs of the motor draw a higher current. This higher current is sensed by the motor's overload heaters in the motor's contactor and take the motor off line by opening the motor contactor. Now to the question, any two legs of a three phase system in electrical terms is known as single phase. As long as the three phase voltage matches the voltage needed in the single phase power diagram it can be connected to operate single phase equipment.


You have one hp three phase motor where as available power supply is only single phase how can you run this motor?

You will need to install a phase converter or change the motor to single phase. You can find a licensed electrician at www.contraxtor.com


How many earth wires are required for single phase motor?

There is only one ground wire needed on any motor, single or three phase.


What is the ideal insulation resistance to earth for a single phase and three phase motor?

Infinity