Multiple places
Yes, DNA replication occurs in the 5' to 3' direction on the template strand.
DNA replication starts at multiple points along the DNA strand simultaneously. This process allows for efficient and rapid duplication of the genetic material.
Replication occurs in the 5' to 3' direction. The new DNA strand is synthesized in the 5' to 3' direction, while the parental template strand acts as the template for this synthesis. This directionality allows for continuous synthesis on one strand (leading strand) and discontinuous synthesis on the other strand (lagging strand).
the two strand are antiparallel and the new strand must be formed on the old(parent) strand in opposite directions one of the new strand is formed as a continuous occur in long chain in the 5'_3' directions on 3'_5' strand of dna this is called the leading strand..
Semiconservative DNA replication occurs in the nucleus of eukaryotic cells and in the cytoplasm of prokaryotic cells. It involves separating the DNA strands and using each strand as a template to synthesize a new complementary strand.
During DNA replication, the enzyme DNA polymerase adds nucleotides to the growing DNA strand by matching them with the complementary nucleotides on the template strand. This process ensures accurate copying of the genetic information.
During DNA replication, the enzyme DNA polymerase reads the original DNA strand and creates a complementary strand by matching nucleotides. This process ensures accurate duplication by proofreading and correcting any errors that may occur.
During the process of DNA replication, the DNA splits due to the action of enzymes called helicases. These helicases unwind the double helix structure of the DNA, allowing it to separate into two strands. This separation is necessary for the replication process to occur, as each strand serves as a template for the creation of a new complementary strand.
DNA replication occurs in the nucleus of eukaryotic cells. This process involves the synthesis of a new DNA strand complementary to the original DNA template.
The enzyme responsible for facilitating the assembly of the complementary new strand of DNA is DNA polymerase. During DNA replication, DNA polymerase adds nucleotides to the growing DNA strand by pairing them with the template strand, ensuring accurate base pairing. This enzyme also has proofreading capabilities to correct any mistakes that may occur during the replication process.
DNA replication requires the opening of the 'zipped up' DNA strand. This is so a 'new' strand of DNA can be inserted and have a template strand to 'read' off. DNA polymerase analyses the bases on the template strand and adds each complementary base to synthesise the 'new' strand. In order for DNA polymerase to be able to do this the DNA has to be opened up by helicase to reveal the bases of the template strand. The unzipping of the DNA by helicase forms the replication fork. Thus the function of the replication fork is to reveal template strands for DNA replication to actually occur.
DNA itself is made up of nucleotides. Nucleotides links with each other to form a DNA chain. In the process of DNA replication, parent DNA strand needs to be duplicated. Hence, to make a new strand of DNA it requires nucleotides.