The complementary DNA strand to ACTGGCTAC is TGACCGATG.
The complementary DNA strand produced from the given DNA strand TCG AAG would be AGC TTC. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, each base on the original strand is matched with its complementary base to form the new strand.
To provide the complementary strand of DNA, I would need to see the specific sequence of the given DNA strand. DNA strands are complementary based on base pairing rules: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). If you provide the sequence, I can generate the corresponding complementary strand for you.
A binds with T, G binds with C.Therefore the complementary strand for ATCGCATT would be TAGCGTAA.
To determine the base sequence on the complementary DNA strand, you need to know the base sequence of one strand. DNA is composed of four bases: adenine (A), thymine (T), cytosine (C), and guanine (G). The complementary base pairing rules state that A pairs with T and C pairs with G. For example, if the given strand is 5'-ATCG-3', the complementary strand would be 3'-TAGC-5'.
To determine the complementary DNA strand produced from a given DNA sequence, you need to match each nucleotide with its complementary base: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). For example, if the original DNA strand is 5'-ATCG-3', the complementary strand would be 3'-TAGC-5'. The directionality of the strands is also important, so ensure to maintain the 5' to 3' orientation when writing the complementary sequence.
The melting temperature TM, characterises the stability of the DNA hybrid formed between an oligonucleotide and its complementary strand. At TM 50% a given oligonucleotide can hybridised to its complementary strand. By: Zoya Mobeen
The complementary DNA strand produced from the given DNA strand TCG AAG would be AGC TTC. In DNA, adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). Therefore, each base on the original strand is matched with its complementary base to form the new strand.
To provide the complementary strand of DNA, I would need to see the specific sequence of the given DNA strand. DNA strands are complementary based on base pairing rules: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). If you provide the sequence, I can generate the corresponding complementary strand for you.
A binds with T, G binds with C.Therefore the complementary strand for ATCGCATT would be TAGCGTAA.
To determine the base sequence on the complementary DNA strand, you need to know the base sequence of one strand. DNA is composed of four bases: adenine (A), thymine (T), cytosine (C), and guanine (G). The complementary base pairing rules state that A pairs with T and C pairs with G. For example, if the given strand is 5'-ATCG-3', the complementary strand would be 3'-TAGC-5'.
To determine the complementary DNA strand produced from a given DNA sequence, you need to match each nucleotide with its complementary base: adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). For example, if the original DNA strand is 5'-ATCG-3', the complementary strand would be 3'-TAGC-5'. The directionality of the strands is also important, so ensure to maintain the 5' to 3' orientation when writing the complementary sequence.
The complementary sequence for a DNA sequence is formed by replacing each nucleotide with its complementary base. For the given sequence "atgcccgggtgtcgtagttga," its complementary sequence would be "tacgggccacagcatcaact."
Purine- Adenine, guanine,pyrimidine- thymine, cytosineAdenine pairs with thymineGuanine pairs with cytosineTherefore the complementary strand to TCG AAG is AGC TTC=========================================================A always pairs with T, and C always pairs with G so the complementary strand is as follows:TCG AAG (Original)AGC TTC (Complementary)GCA TAT
A complimentary DNA sequence is the genetic code on the partner strand that aligns with and corresponds to (matches) the code on the primary strand. Each nucleotide has a match, A matches T and C matches G, therefore the complimentary sequence for ATCGA is TAGCT.
To find the complementary DNA strand for the given sequence "CGA CT," you need to pair each base with its complementary base: Cytosine (C) pairs with Guanine (G), Guanine (G) pairs with Cytosine (C), and Adenine (A) pairs with Thymine (T). Thus, the complementary DNA produced would be "GCT GA."
The complementary strand for the given DNA sequence cttaggcttacca is gaatccgaatggt. This is obtained by pairing cytosine with guanine, thymine with adenine, adenine with thymine, and guanine with cytosine.
It's not ACCTGGAT.I think it might be TGGACCTA.you are wrong.. it IS ACCTGGAT