kVA = kW divided by (power factor). The power factor is the cosine of the angle between voltage and current.
The same way, as you convert Appels to Carrots ........... There is a formula: KVAr = KVA / KW or cos=KW/KVA > Yes, we are treating KW, KVA, & KVAr as the 3 sides in a 90 deg TRIANGLE ! KW= vertical katede KVAr = horizontal katede KVA = hypotenuse
Multiply by Amps.
kva*cos(phase angle)
To convert 2 kW to kVA in single phase, you need to know the power factor. If we assume a power factor of 0.8 (common for many single-phase loads), the conversion formula is kVA = kW / power factor. Therefore, for 2 kW at a power factor of 0.8, the result would be 2 kVA / 0.8 = 2.5 kVA.
To convert AC tonnage to kVA and kW, use the following formulas: For kVA: kVA = (tonnage x 3.517) For kW: kW = (tonnage x 3.517 x power factor). Remember to consider the power factor of the system when converting from tonnage to kVA and kW.
5kw = 6.25 kva becoz kva = kw/ pf if we take pf is o.8
It is less confusing if we capitalize the units as required. 1 kVA = 1 kW, as originated from power [W] = current [A] * voltage [V]. The 'k' means 'times 1000'. The statement can be re-written as 1000 VA = 1000 W.
To convert 'kwh' to 'kvah' you first need to measure the length of time. You will then convert this amount to hours by dividing by 3,600. You will then divide this amount by the length of time.
KVA is the unit for the apparent power i.e it's the vector sum of the true power in KW and the reactive power in reactive volt-amperage. So, to get the value of the KVA for the 30KW,just divide the active power(30kw) with the power factor of that load.
kva and kw are related as KVA = (KW/PF) pf:power factor
It depends on the power factor, which depends on the reactance of the load.For a typical power factor of 0.92, 150 KVAR translates to 383 KVA, which translates to 352 KW.Power factor is the cosine of the phase angle (theta) between voltage and current. KVA times cosine (theta) is KW, while KVA times sine (theta) is KVAR.
12HP is approximately 10.8 KVA. You would want to use a 15KVA transformer to supply this motor. KW = HP * .75 KVA = KW * 1.2 (These formulas are approximate)