Hurricanes Typhoons and Cyclones
Energy
Solar Power

How do hurricanes form and how do they get their energy?

678

Top Answer
User Avatar
Wiki User
Answered
2008-03-13 14:16:37
2008-03-13 14:16:37

Feature September 26, 2005 Researchers Explore Mystery of Hurricane Formation All Atlantic hurricanes, no matter how grand they may become, begin the same. Each starts as a small disturbance in the atmosphere above equatorial Africa. These disturbances, called tropical waves, head west and, if conditions are just right, they increase in size and start spinning. Some develop into tropical depressions, grow into tropical storms and finally evolve into full-blown hurricanes. "The mystery is why does it happen," says JPL researcher Bjorn Lambrigtsen, "There is a constant stream of these tropical waves coming off the coast of Africa, but most don't turn into hurricanes." Lambrigtsen is the microwave instrument scientist on the Atmospheric Infrared Sounder on NASA's Aqua satellite. "Understanding how hurricanes form will help us be able to predict how they evolve and where they may go." This past summer Lambrigtsen headed off to Costa Rica with a group of NASA researchers to learn more about the birth of hurricanes and to test some of the latest weather technology. He took along a special instrument designed and built at JPL with hurricanes in mind. The High Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer uses the latest microwave technology to make three-dimensional measurements of temperature, water vapor and liquid water in the atmosphere. Because it uses microwaves, it can see through clouds to the inside of a storm. It is a prototype for instruments that will fly on the next generation of weather satellites. "For a tropical wave to turn into a hurricane, it needs something to give it a twist and it needs convection," says Lambrigtsen. A hurricane is a giant heat engine like a boiler, he explains, taking moisture from the surface and shooting it skyward. As water vapor condenses into rain, evaporates and condenses again, it releases energy that helps drive the engine. "Our microwave atmospheric profiler measures how temperature and water vapor are distributed inside the hurricane," says Lambrigtsen," so we get a picture of the storm's internal processes and how energetic it is." Researchers picked Costa Rica for this latest hurricane field experiment, called the Tropical Cloud Systems and Processes mission, because of its geography. "There was an idea that tropical waves coming across the Atlantic might just get that little twist they need to turn into hurricanes by coming across land," says Lambrigtsen. "We thought that this might be where Eastern Pacific hurricanes get their start." "Atlantic hurricanes typically evolve into tropical storms while still over open water far out in the Atlantic - often so far that it is difficult to reach them," he explains. "Eastern Pacific hurricanes also often have their origin in Africa, but in their case they do not evolve into tropical storms until they pass over Central America into the Pacific -- the cyclogenesis takes place during the crossing or soon afterward. We realized that we stood a greater chance of being able to fly over an early-stage system in the vicinity of Central America, and we'd be able to reach both Atlantic hurricanes that formed in the Gulf of Mexico, as some of them do, and Eastern Pacific hurricanes that formed not too far out in the Pacific." For their experiment, they brought together six specialized weather instruments, including the microwave atmospheric profiler, to fly on NASA's ER-2 aircraft, a research version of the famous U-2 spy plane. They planned their flights to coincide with overflights of NASA and National Oceanic and Atmospheric Administration satellites to get the maximum amount of information possible. Comparing data from the airborne instruments with that from the satellites helps validate the satellite measurements, another of the field campaign's goals. Data from the JPL profiler are especially useful for validating satellite observations by the Atmospheric Infrared Sounder's suite of instruments, which includes microwave sensors. In early July, Lambrigtsen and his colleagues mounted the 50-kilogram (100-pound) instrument on the wing of the ER-2 aircraft, and hoped for the best. This was only the second outing for the microwave profiler; its first was in a similar field experiment in 2001. The researchers didn't have long to wait. Hurricane Dennis, the first major storm of the 2005 Atlantic hurricane season, was taking shape unusually early in the nearby Caribbean. "We flew over Dennis three times in five days," says Lambrigtsen. "We were able to catch its evolution from a tropical storm into a hurricane." "Hurricanes are such severe storms that it is hard to fly through them," Lambrigsten says. "The Air Force flies just twice a day through hurricanes to measure wind speed. Most satellites can see only the tops of the storms, only a few can look through the clouds and they mostly get only a fleeting glance as they pass overhead. Having our instruments on the ER-2 flying above the storm, we were able to look down and into the hurricane. It's like having our own little satellite that we can dedicate to that one storm." In addition to being able to view Dennis' growth, the researchers also caught a glimpse of their primary target -- the moment when a tropical wave starts spinning. "We were able to catch cyclogenesis near Central America," says Lambrigtsen. "We observed one wave that developed cyclonic winds and started to become an organized storm but later fizzled out and several tropical waves that didn't evolve very far. Once we have had a chance to study our data, we may be able to answer some of the questions about when this happens and when it doesn't. This is tricky stuff, we're not normally aware of what is happening with a hurricane until it has been named and well on its way to becoming a big monster." Alan Buis/JPL (818) 354-0474 Jet Propulsion Laboratory, Pasadena, Calif. Written by Rosemary Sullivant

001
๐Ÿ™
0
๐Ÿคจ
0
๐Ÿ˜ฎ
0
๐Ÿ˜‚
0

Related Questions


Yes. Warm water holds enormous amounts of energy in the form of heat which can be made available to storms such as hurricanes.

Hurricanes form over warm oceans, (that's how they get their energy) and there aren't any near Canada.

because they get their energy from warm ocean water.

Many hurricanes begin from the Atlantic or the Caribbean and form as a result of the warm water in the tropics feeding a storm with energy. The atmosphere must also be heavily laden with moisture for a hurricane to form.

Simply put, heat is energy. That energy is the fuel of hurricanes and a variety of other storms.

Hurricanes use the warm moist ocean air as an energy source so as soon as it hits land the moist air is no longer there. Although hurricanes lose energy over land, they still do devastating amounts of damage.

Yes, that is where hurricanes usually form.

Hurricanes get their energy from water vapor that evaporates from warm ocean water.

Hurricanes get their energy from moisture that evaporates from warm ocean water.

Hurricanes do not form in the United States. All hurricanes form in the ocean, usually far away from land.

Arizona does not get hurricanes.

They lose there energy when the Hurricanes reach land because the sea is there food and energy. when the hurricanes reach land it destroys thinks in its path and dies.

Hurricanes get their energy from moisture that evaporates from warm ocean water. Warm, moist air holds enormous amounts of energy. This air is drawn into a hurricane and the moisture condenses to form clouds, releasing its energy in the process to power the storm.

June-November, depending on what area the hurricanes form in

No. About 3% of hurricanes form out of season.

Hurricanes do not form along frontal boundaries.

Hurricanes form over the open ocean not on islands.

Tornadoes get their energy from their parent thunderstorms. Thunderstorms and hurricanes get their energy from the latent heat stored in watervapor in warm, moist air. This moisture evaporates from the land and bodies of water due to heating from the sun.

That is generally when the ocean is warmest. Hurricanes get their energy from warm ocean water. However, in rare cases Atlantic hurricanes occur outside of this range.

Yes. Hurricanes form over warm ocean water.

Hurricanes form over tropical ocean water.

No, hurricanes can only form over warm ocean water.

Hurricanes do not form over land or over cold ocean water.

Hurricanes form over warm ocean water.

No, hurricanes get their energy from evaporation from warm ocean water.


Copyright ยฉ 2020 Multiply Media, LLC. All Rights Reserved. The material on this site can not be reproduced, distributed, transmitted, cached or otherwise used, except with prior written permission of Multiply.