Away from us.
Most galaxies exhibit a redshift, meaning that they move away from us.
The "redshift" refers to the fact that the light is less energetic than when it was emitted; it shows that the galaxies move away from us. Should a galaxy move towards us - which is possible only for galaxies that are relatively close to us - then there would be a blueshift.
The "nucleus".
The Big Bang theory was set up to explain observations - for example, the redshift of distant galaxies, which is usually interpreted to mean that the galaxies move away from us.
Redshift is the phenomenon where light from distant galaxies appears to be shifted towards longer (redder) wavelengths. This is due to the expansion of the universe causing the galaxies to move away from us. The amount of redshift is directly related to the distance of the galaxy from us, with more distant galaxies experiencing higher redshift.
The light from distant galaxies shows redshift because the universe is expanding. As the galaxies move away from us, the light they emit gets stretched, causing its wavelength to increase and shift towards the red end of the spectrum. This redshift can help scientists determine the velocity at which galaxies are moving away from us and provide insights into the expansion of the universe.
Scientists believe that galaxies formed earlier in the universe's history, with the most distant galaxies being some of the first to have formed after the Big Bang. Studying these distant galaxies can provide insights into the early stages of galaxy formation and evolution.
They study distant galaxies because they want to know whats out in other galaxies and how many planets it has
The redshift of distant galaxies is due to the expansion of the universe. As galaxies move away from us, the light they emit is stretched to longer wavelengths, shifting them towards the red end of the spectrum. This phenomenon is known as cosmological redshift and is a key piece of evidence supporting the Big Bang theory.
Scientists study distant galaxies to understand the formation, evolution, and properties of galaxies over time. By observing galaxies that are far away, they can explore the universe at different epochs and gain insights into how galaxies have changed and evolved since the early universe. Studying distant galaxies also helps scientists refine theories about the laws of physics and the nature of the universe as a whole.
The visible part of distant galaxies is the collection of stars, gas, and dust within the galaxy. These components emit light that reaches our telescopes, allowing us to observe and study the structure and properties of the galaxies.
Moving away from us