answersLogoWhite

0


Want this question answered?

Be notified when an answer is posted

Add your answer:

Earn +20 pts
Q: How do the vesicles know when to move to the membrane and dump their contents into the synaptic cleft?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

What is the name of the cell that releases the neurotransmitters?

Exocytosis. As a result of the influx of Calcium ions, the synaptic vesicles transport the neurotransmitter Ach (Acetylcholine) to the presynaptic membrane, the vesicles fuse to the membrane, and the neurotransmiffer, Ach, diffuses. Once the neurotransmitters cross the synaptic cleft, they bind to the receptors on the post synaptic membrane. Hope it helps a bit.


What causes the synaptic delay?

The cause of synaptic delay is attributed mainly to the time needed for the synaptic vesicles to release neurotransmitter into the synaptic cleft. While it can be considered a combination of binding to the presynaptic membrane (which is relatively a transient process) and subsequent exocytosis of the neurotransmitter, the main factor is release. Additionally, it does take a very short period of time for the neurotransmitter to diffuse across the synaptic cleft and bind to to its receptors on the post-synaptic membrane.


When electrical signal reaches end of nerve fiber a chemical what is secreted?

When the action potential (electrochemical signal) reaches the end of the nerve, calcium channels open, causing synaptic vesicles containing neurotransmitters to bind with the neuronal membrane. When this happens, the neurotransmitters are released into the synaptic cleft (process is called exocytosis). Once in the synaptic cleft, they can bind with postsynaptic neuron or muscle cell receptors.


How do nerve impulses travel across the synapse?

By a chemical released by an axon.


The space between one neuron and the next is a?

This area is referred to as the synaptic cleft. This area is bound by the end of one neuron (the terminal bouton) and the post-synaptic membrane of the next neuron. When an action potential reaches the terminal bouton, Ca2+ influx triggers the release of neurotransmitters across the cleft, which bind to receptors on the post-synaptic membrane, allowing for an post-synaptic excitatory potential (PSEP) to be formed in the next neuron.

Related questions

What ion triggers the release of a neurotransmitter at the presynaptic membrane?

Calcium triggers synaptic vesicles to discharge the neurotransmitter into the synaptic cleft.


What is the name of the cell that releases the neurotransmitters?

Exocytosis. As a result of the influx of Calcium ions, the synaptic vesicles transport the neurotransmitter Ach (Acetylcholine) to the presynaptic membrane, the vesicles fuse to the membrane, and the neurotransmiffer, Ach, diffuses. Once the neurotransmitters cross the synaptic cleft, they bind to the receptors on the post synaptic membrane. Hope it helps a bit.


What means of membrane transport is used to release the neurotransmitter into the synaptic cleft?

Neurotransmitters are released from the nerve terminals by a specialized exocytosis process, synaptic vesicles. These are small nearly uniform capsules that join with the cell membrane to expel their contents. Release is both quantal (set amount) and mediated by calcium.


How do Presynaptic neurons release neurotransmitters?

They don't, the neurotransmitters stay on either side of the synapse. Neurotransmitters are released when the synaptic vesicles fuse with the presynaptic neuron's membrane, so as to release them into the synaptic cleft.


Which area would contain an abundance of vesicles containing neurotransmitter?

Neurotransmitters are stored in synaptic vesicles within axonal terminals for release into the synaptic cleft.


What causes the synaptic delay?

The cause of synaptic delay is attributed mainly to the time needed for the synaptic vesicles to release neurotransmitter into the synaptic cleft. While it can be considered a combination of binding to the presynaptic membrane (which is relatively a transient process) and subsequent exocytosis of the neurotransmitter, the main factor is release. Additionally, it does take a very short period of time for the neurotransmitter to diffuse across the synaptic cleft and bind to to its receptors on the post-synaptic membrane.


What most directly causes synaptic vesicles to release acetylcholine into the synaptic cleft?

calcium entering the axon terminal


Which structure contains vesicles with acetylcholine?

Synaptic vesicles in the neuromuscular junction contain acetylcholine (ACh) which is the neurotransmitter for initiating muscular contractions.


What is the normal sequence of events that occur during synaptic transmission at a motor end plate?

1. Nerve impulse reaches synaptic terminal. 2. Synaptic vesicles move to and merge with the presynaptic cell membrane of the motor neuron. 3. Acetylcholine is released into and diffuses across the synaptic cleft. 4. Acetylcholine binds to receptors on the postsynaptic cell membrane of the muscle fiber.


When electrical signal reaches end of nerve fiber a chemical what is secreted?

When the action potential (electrochemical signal) reaches the end of the nerve, calcium channels open, causing synaptic vesicles containing neurotransmitters to bind with the neuronal membrane. When this happens, the neurotransmitters are released into the synaptic cleft (process is called exocytosis). Once in the synaptic cleft, they can bind with postsynaptic neuron or muscle cell receptors.


Is it the synaptic cleft that contains vesicles filled with acetylcholine?

The synaptic knob contains vesicles filled with neurotransmitters. Therefore, Acetylcholine is the neurotransmitter that stimulates skeletal muscle to contract. It is released into the synaptic clefts between motor neuron axons and motor end plates.


How do nerves impulse's across the synapse?

Most neurons have a chemical synapse, which is to say that a substance called a neurotransmitter is released from the first neuron (called pre-synaptic) to the next neuron called (post-synaptic). How is the release triggered? When an action potential reaches the terminus (end of the axon) there are specialized calcium channels that are opened (voltage-gated). The calcium bind so the inner membrane and triggers the release of small membrane bound vesicles which spill out their contents of neurotransmitter into the synaptic cleft. The neurotransmitter binds to specific receptors on the post-synaptic membrane and that causes the action potential to propagate on (or for the neurotransmitter to cause an action like a muscle contraction).