A: Nobody can with an VOM
The effective resistance of the capacitor reduces the ripple current through the capacitor making it less effective in its function of smoothing the voltage. But if the capacitor filter is fed by a transformer and diodes, the resistance of the transformer exceeds that of the capacitor.
ideally there will not be any resistance to the capacitor,so at this condition it should not not discharge the stored energy. but practically small resistance will be there in the capacitor so the energy stored by the capacitor will be discharged through resistance.
1. The capacitor has Lead resistance in series with the capacitor2. Since most capacitor use Dielectric and they have a leakage resistance and it is parallel to the Ideal Capacitor.
In a circuit with a capacitor, resistance and capacitance are related in how they affect the charging and discharging process of the capacitor. Resistance limits the flow of current in the circuit, which affects how quickly the capacitor charges and discharges. Higher resistance slows down the charging and discharging process, while lower resistance speeds it up. Capacitance, on the other hand, determines how much charge the capacitor can store. Together, resistance and capacitance impact the overall behavior of the circuit with a capacitor.
If the resistance is in series with the capacitor, the charge/discharge time is extended.
because resistance is restricting the current and voltage, so for it be accurate you need to know what the voltage and the amps are.AnswerCapacitance is quite independent of resistance and, therefore, it will NOT vary if resistance is changed.
The formula for calculating the resistance of a capacitor in an electrical circuit is R 1 / (2 f C), where R is the resistance, f is the frequency of the circuit, and C is the capacitance of the capacitor.
The resistance of a capacitor is determined by its construction and materials used. Higher resistance can lead to slower charging and discharging of the capacitor, affecting the performance of the capacitor in an electronic circuit by potentially causing delays in signal processing or affecting the overall efficiency of the circuit.
Consider the instantaneous DC analysis. Initially, the capacitor has zero resistance. You apply a voltage and current is controlled by other resistive elements alone. As the capacitor charges, its effective resistance rises. This adds to the net resistance in the circuit, reducing current. At full charge, the capacitor has infinite resistance, so there is no current. Remember that the equation for a capacitor is dv/dt = i/c.
The relationship between capacitor resistance and the overall performance of an electronic circuit is that the resistance of a capacitor affects the charging and discharging times of the capacitor, which can impact the timing and stability of the circuit. Higher resistance can lead to slower charging and discharging, potentially affecting the circuit's functionality and efficiency.
ESR stands for Equivalent Series Resistance. It is a measure of the internal resistance of a capacitor. Lower ESR values indicate better performance in terms of energy efficiency and stability in electrical circuits.
The formula for calculating the resistance of a capacitor is R 1 / (2 f C), where R is the resistance in ohms, f is the frequency in hertz, and C is the capacitance in farads.