answersLogoWhite

0


Best Answer

A transformer is a device in which two circuits are coupled by a magnetic field that is linked to both. There is no conductive connection between the circuits, which may be at arbitrary constant potentials. Only changes in one circuit affect the other. The circuits often carry at least approximately sinusoidal currents, and the effect of the transformer is to change the voltages, while transferring power with little loss. Sinusoidal excitation is not necessary, and Transformers may handle arbitrary signals, in which the action can be considered as a transformation of impedances. The magnetic field coupling the circuits can be in air, but is usually in a ferromagnetic material, the core, in which the field can be thousands of times greater than it would be in air, making the transformer efficient and small. The transformer is an honorary electrical "machine" in which the flux changes occur by variation in currents with time, instead of by motion.

Most transformers with iron cores can be considered as ideal when you use them. An ideal transformer has no losses, an aim that is closely attained in practice, so the energy transfer from the primary circuit to the secondary circuit is perfect. The diagram represents such a transformer, showing the core with magnetic flux φ, the primary winding of N1 turns, and the secondary winding of N2 turns. The reference directions for the voltages and currents at the terminals are shown. All of these quantities are to be considered as phasor amplitudes, varying sinusoidally with time. Note the dots at one or the other of the terminals of each winding. Currents entering the dotted terminals produce flux in the same direction, the direction shown. The current and voltage ratios are equal to the turns ratio. This means that the power factor (cosine of the phase angle), and the power, are the same at input (primary) and output (secondary). These things you probably already know, and we will not explore their consequences further.

The diagram shows the usual schematic way to represent a transformer. In an actual transformer, the windings are wound on top of each other, not on separate legs, to reduce leakage flux. In the usual shell-type transformer, both primary and secondary are on one leg, and are surrounded by the core. A core-type transformer has windings covering the core legs.

In order to design a transformer, or to examine in more detail how it departs from ideality, it is necessary to understand how a transformer works, not just how to express its terminal relations in an approximate way. It is also important to know how the properties of the iron core affect the performance of the transformer. A real transformer becomes hot because of losses, and the ouput voltage may vary with load even when the primary voltage is held constant.

The mutual flux φ is the means of transfer of energy from primary to secondary, and links both windings. In an ideal transformer, this flux requires negligibly small ampere-turns to produce it, so the net ampere-turns, primary plus secondary, is about zero. When a current is drawn from the secondary in the positive direction, ampere-turns decrease substantially. This must be matched by an equal increase in primary ampere-turns, which is caused by an increase in the current entering the primary in the positive direction. In this way, the back-emf of the primary (the voltage induced in it by the flux φ) equals the voltage applied to the primary, as it must. This fundamental explanation of the operation of a transformer must be clearly understood before proceeding further.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

12y ago

The flux in a transformer remains same irrespective of load.....

so, terminal voltage is constant...

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How does the amount of load affect the efficiency of a transformer?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

What will happen when we change value of load resistance in transformer?

When the value of the load resistance in a transformer is changed, it will affect the current flowing through the circuit. Increasing the load resistance will decrease the current, while decreasing the load resistance will increase the current. This change in current will in turn affect the voltage across the load and the efficiency of the transformer.


What is the significant relationship of the no load loss in excitation current test in transformer?

The no load losses are the losses caused by energizing the transformer. These are constant losses, regardless of loading. This in effect tells you the efficiency of the transformer. (Power in) - (no load losses) = (Power out)


Why are distribution transformers frequently designed to develop maximum efficiency at loads that are somewhat lower than rated value?

It is always desirable to run any equipment or device at maximum efficiency for that matter, not only the power transformer. Power transformer maximum efficiency occurs when copper loss is equal to iron loss. (or no load loss equals to load loss). This does not necessariliy mean that maximum efficiency occurs at maximum or full load. Generally the maximum efficiency occurs at relatively less than full load of the transformer.


How to calculate transformer core loss and iron loss?

there are several losses in a transformer that prevent it from attaining 100% efficiency. One is core loss, which can be divided into Hysteresis losses, Eddy currents and Magnetostriction loses. see for more details http://en.wikipedia.org/wiki/Transformer#Energy_losses


Can i Over load an oil filled transformer?

Any transformer can be overloaded by applying a load above the capacity rating of the transformer.

Related questions

When is the efficiency maximum in a transformer?

the efficiency is maximum in a transformer when no load loss is equal to load loss.


How do you find the maximum amp draw on a step up transformer?

It depends on the load. A good transformer has over 90% (some as high as 99%) efficiency. So the power drawn by it is a function of the power in the load, plus a small amount due to losses in the transformer.


What is the percentage load at which maximum efficiency occurs for the single phase transformer?

That is the maximum efficiency occurs when the copper losses are equal to the core losses of the transformer.


What will happen when we change value of load resistance in transformer?

When the value of the load resistance in a transformer is changed, it will affect the current flowing through the circuit. Increasing the load resistance will decrease the current, while decreasing the load resistance will increase the current. This change in current will in turn affect the voltage across the load and the efficiency of the transformer.


What is the significant relationship of the no load loss in excitation current test in transformer?

The no load losses are the losses caused by energizing the transformer. These are constant losses, regardless of loading. This in effect tells you the efficiency of the transformer. (Power in) - (no load losses) = (Power out)


What is the efficiency of a transformer that has an input of 600 VA and an output to a load of 580 VA?

96%


When a two winding transformer is connected as an autotransformer its efficiency under full load is?

remain same


Why are distribution transformers frequently designed to develop maximum efficiency at loads that are somewhat lower than rated value?

It is always desirable to run any equipment or device at maximum efficiency for that matter, not only the power transformer. Power transformer maximum efficiency occurs when copper loss is equal to iron loss. (or no load loss equals to load loss). This does not necessariliy mean that maximum efficiency occurs at maximum or full load. Generally the maximum efficiency occurs at relatively less than full load of the transformer.


What is the efficiency of power transformer at same load at 0.9 lead and 0.9 lag power factor?

Same


How to calculate transformer core loss and iron loss?

there are several losses in a transformer that prevent it from attaining 100% efficiency. One is core loss, which can be divided into Hysteresis losses, Eddy currents and Magnetostriction loses. see for more details http://en.wikipedia.org/wiki/Transformer#Energy_losses


Is a transformer load inductive or capacitive?

A transformer is fundamentally a set of coils; therefore, a transformer is an inductive load. However, by "transformer load", you seem to mean "the load that is connected to a transformer". Whether that load is inductive or capacitive depends mostly on what is hooked up to the transformer.


Why transformer rated kva?

The correct symbol for kilovolt amperes is 'kV.A, not kva. A volt ampere is the product of the transformer's secondary rated voltage and its rated current. It is not rated in watts, because the transformer designer has no idea what sort of load is to be applied to the transformer, and it is the load that determines the amount of watts, not the transformer.