answersLogoWhite

0


Best Answer

magnetic moment of a particle is due to its motion around some other orbits or about its own orbit i.e due to its orbital angular momentum or its spin angular momentum.

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How magnetic moment of electron is associated with angular momentum of electron?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Natural Sciences

What is the angular momentum of an electron in 2s-orbital?

Zero.


What is spin quantization?

Electron Spin:An electron spin s = 1/2 is an intrinsic property of electrons. Electrons have intrinsic angular momentum characterized by quantum number 1/2. In the pattern of other quantized angular momenta, this gives total angular momentumSpin "up" and "down" allows two electrons for each set of spatial quantum numbers.The resulting fine structure which is observed corresponds to two possibilities for the z-component of the angular momentum.This causes an energy splitting because of the magnetic moment of the electronTwo types of experimental evidence which arose in the 1920s suggested an additional property of the electron. One was the closely spaced splitting of the hydrogen spectral lines, called fine structure. The other was the Stern-Gerlach experiment which showed in 1922 that a beam of silver atoms directed through an inhomogeneous magnetic field would be forced into two beams. Both of these experimental situations were consistent with the possession of an intrinsic angular momentum and a magnetic moment by individual electrons. Classically this could occur if the electron were a spinning ball of charge, and this property was called "electron spin."Quantization of angular momentum had already arisen for orbital angular momentum, and if this electron spin behaved the same way, an angular momentum quantum number s = 1/2 was required to give just two states. This intrinsic electron property


Why does the concept of Bohr orbits violate the uncertainty principle?

The Bohr Model of a single-electron atom assumes that the energy levels of electron orbits are fixed due to the quantization of angular momentum of the electron while in orbit. The problem occurs because angular momentum depends on both the radius of the orbit and the velocity of the electron in that orbit. If one or the other is uncertain, then it is impossible to know the angular momentum. Heisenberg showed that either one or the other MUST be uncertain. If we are certain about the radius, we MUST have uncertainty about the velocity -- and vice-versa. Thus, angular momentum of an orbting electron can NOT be quantized, because it can not be known.


What is a quantum number?

Four quantum numbers are used to describe electrons. The principle quantum number is the energy level of an electron. The angular momentum number is the shape of the orbital holding the electron. The magnetic quantum number is the position of an orbital holding an electron. The spin quantum number is the spin of an electron.


What is the definition of quantum number?

Four quantum numbers are used to describe electrons. The principle quantum number is the energy level of an electron. The angular momentum number is the shape of the orbital holding the electron. The magnetic quantum number is the position of an orbital holding an electron. The spin quantum number is the spin of an electron.

Related questions

What is the angular momentum of an electron in 2s-orbital?

Zero.


What does the angular quantum number tell you?

The angular momentum number shows the shape of the electron cloud or the orbital. The magnetic quantum number, on the other hand, determines the number of orbitals and their orientation within a subshell.


What is spin quantization?

Electron Spin:An electron spin s = 1/2 is an intrinsic property of electrons. Electrons have intrinsic angular momentum characterized by quantum number 1/2. In the pattern of other quantized angular momenta, this gives total angular momentumSpin "up" and "down" allows two electrons for each set of spatial quantum numbers.The resulting fine structure which is observed corresponds to two possibilities for the z-component of the angular momentum.This causes an energy splitting because of the magnetic moment of the electronTwo types of experimental evidence which arose in the 1920s suggested an additional property of the electron. One was the closely spaced splitting of the hydrogen spectral lines, called fine structure. The other was the Stern-Gerlach experiment which showed in 1922 that a beam of silver atoms directed through an inhomogeneous magnetic field would be forced into two beams. Both of these experimental situations were consistent with the possession of an intrinsic angular momentum and a magnetic moment by individual electrons. Classically this could occur if the electron were a spinning ball of charge, and this property was called "electron spin."Quantization of angular momentum had already arisen for orbital angular momentum, and if this electron spin behaved the same way, an angular momentum quantum number s = 1/2 was required to give just two states. This intrinsic electron property


Why does the concept of Bohr orbits violate the uncertainty principle?

The Bohr Model of a single-electron atom assumes that the energy levels of electron orbits are fixed due to the quantization of angular momentum of the electron while in orbit. The problem occurs because angular momentum depends on both the radius of the orbit and the velocity of the electron in that orbit. If one or the other is uncertain, then it is impossible to know the angular momentum. Heisenberg showed that either one or the other MUST be uncertain. If we are certain about the radius, we MUST have uncertainty about the velocity -- and vice-versa. Thus, angular momentum of an orbting electron can NOT be quantized, because it can not be known.


How many qantum numbers are used to describe each electron?

Four: Principal (n) - shell Azimuthal (l) - subshell Magnetic (ml or just m) - orbital orientation Spin (ms or just s) - electron's angular momentum


What is the difference between angular velocity and angular momentum?

angular momentum and angular velocity


What is a quantum number?

Four quantum numbers are used to describe electrons. The principle quantum number is the energy level of an electron. The angular momentum number is the shape of the orbital holding the electron. The magnetic quantum number is the position of an orbital holding an electron. The spin quantum number is the spin of an electron.


Angular momentum is a measure of?

angular momentum is the measure of angular motion in a body.


What is the definition of quantum number?

Four quantum numbers are used to describe electrons. The principle quantum number is the energy level of an electron. The angular momentum number is the shape of the orbital holding the electron. The magnetic quantum number is the position of an orbital holding an electron. The spin quantum number is the spin of an electron.


What is the difference between a positron and electron and a nutrino?

A positron is like an electron in every way but charge, electrons having -1, positrons having +1. In other words, they're a positron is an electron's antiparticle. Neutrinos are chargeless, pointlike, nearly massless particles associated with electron and positron decays that exist in order to preserve the conservation of energy, momentum and angular momentum in these decay processes.


Which quantum number specifies the direction of an electron's angular momentum?

"l" is known as the angular momentum quantum number. Principal Quantum Number = n Angular Momentum " " = l Magnetic " " = ml Spin " " = ms (Only possible values are 1/2 and -1/2) Search "Permissible Values of Quantum Numbers for Atomic Orbitals" for the values. You basically have to understand the concepts & be able to recreate the chart for tests, otherwise you can blindly memorize it. The chart should be in your book.


What has the author James R Downer written?

James R. Downer has written: 'Modelling and control of an annular [i.e. angular] momentum control device' -- subject(s): Bearings (Machinery), Magnetic suspension, Angular momentum