answersLogoWhite

0

Each enzyme has an optimal salt concentration. Changes in the salt concentration may also denature enzymes.

User Avatar

Ambrose Krajcik

Lvl 13
2y ago

What else can I help you with?

Related Questions

What does the enzyme activity curve reveal about the relationship between enzyme concentration and reaction rate?

The enzyme activity curve shows that as enzyme concentration increases, the reaction rate also increases. However, there is a point where adding more enzyme does not further increase the reaction rate, indicating that there is a limit to the effect of enzyme concentration on reaction rate.


What three factors affect the rate of a biochemical reaction?

The three factors that affect the rate of a biochemical reaction are temperature, substrate concentration, and enzyme concentration. Temperature influences the kinetic energy of molecules involved in the reaction, substrate concentration determines the amount of reactants available for the reaction, and enzyme concentration affects the number of catalysts available to facilitate the reaction.


What factors affect the rate of enzyme activity?

Factors that affect the rate of enzyme activity include temperature, pH, substrate concentration, and enzyme concentration. Temperature and pH can alter the shape of the enzyme, affecting its ability to bind to the substrate. Changes in substrate and enzyme concentration can affect the frequency of enzyme-substrate collisions, which impacts the rate of reaction.


What happens to the rate of enzyme concentration when you increase substrate concentration?

The rate of enzyme reaction is increased when the substrate concentration is also increased. However, when it reaches the maximum velocity of reaction, the reaction rate remains constant.


What can Tobin conclude about the relationship between the enzyme concentration and the reaction rate in the presence of excess substrate?

Tobin can conclude that the reaction rate is directly proportional to the enzyme concentration when excess substrate is present. This is because at higher enzyme concentrations, all substrate molecules are already bound to enzyme active sites, leading to a maximal reaction rate even with excess substrate.


What can conclude about the relationship between the enzyme concentration and the reaction rate in the presence of excess molecules?

There is a direct relationship; as the enzyme concentration increases, the rate of reaction increases.


What happens to the reaction rate as the enzyme concentration is increased?

As enzyme concentration increases, the reaction rate usually increases because there are more enzyme molecules available to catalyze the reaction. This is because enzymes can bind to more substrate molecules simultaneously, leading to a greater frequency of successful collisions and faster conversion to product. However, once all substrate molecules are bound to enzymes (enzyme saturation), further increases in enzyme concentration will not significantly affect the reaction rate.


How does increasing enzyme concentration affect the rate of enzyme action when the enzyme concentration remains constant?

It doesn't


Why would you expect the rate of an enzyme-catalyzed reaction to increase proportionately to enzyme concentration given an unlimited supply of substrate?

No, since the reaction reaches a max rate depending on the speed of which the Enzyme bonds to the substrate and the speed at which the enzyme catalyzes the reaction to produce enzyme and product (shown below). E + S --> ES (E - enzyme, S - substrate, P - products) ES --> E + P Thus, if each reaction rate is not equal to each other, the rate of the overall reaction is not only proportional to both the concentration of enzyme and substrate.


The initial rate of an enzyme catalysed reaction depend on?

Based on Michaelis-Menten enzyme kinetics, the initial rate of reaction, vi, is dependent on maximum rate Vmax, substrate concentration [S], and the enzyme's Michaelis constant Km, which represents the the tendency of the substrate/enzyme complex to dissociate. The dependence on enzyme concentration is factored into the maximum rate. The equation to describe this is: vi = Vmax([S]/(Km+[S])) Follow the link below for details.


The ability of an enzyme to catalyze a reaction is not affected by?

The ability of an enzyme to catalyze a reaction is not affected by changes in temperature or pH within a certain range known as the enzyme's optimal conditions. However, extreme changes in temperature, pH, or enzyme concentration can denature the enzyme and affect its activity. Additionally, the substrate concentration can affect the rate of reaction up to a point of saturation, where all enzyme active sites are occupied.


Describe the relationship between substrate concentration and the initial reaction rate of an enzyme-catalyzed reaction Is this a linear relationship What happens to the initial reaction rate as sub?

As the substrate concentration increases so does the reaction rate because there is more substrate for the enzyme react with.