If a conditional statement is true then its contra-positive is also true.
A conditional statement is true if, and only if, its contrapositive is true.
If a conditional statement is true, then so is its contrapositive. (And if its contrapositive is not true, then the statement is not true).
It may or may not be true.
not b not a its contrapositive
A Contrapositive statement is logically equivalent.
If the conditional (if, then) is true, then the contrapositive (reversed; if not, then not) will be also true. And vice versa, if the conditional is false, its contrapositive will be also false. for example,If a graph passes the vertical line test, then it is a graph of a function. (True)If a graph is not a graph of a function, then it will not pass the vertical line test. (True)Yes, but only if the original if-then was true.
Conditional statements are also called "if-then" statements.One example: "If it snows, then they cancel school."The converse of that statement is "If they cancel school, then it snows."The inverse of that statement is "If it does not snow, then they do not cancel school.The contrapositive combines the two: "If they do not cancel school, then it does not snow."In mathematics:Statement: If p, then q.Converse: If q, then p.Inverse: If not p, then not q.Contrapositive: If not q, then not p.If the statement is true, then the contrapositive is also logically true. If the converse is true, then the inverse is also logically true.
The converse of an inverse is the contrapositive, which is logically equivalent to the original conditional.
A contrapositive means that if a statement is true, than the characteristics also pertains to the other variable as well.
A conditional statement may or may not be true.
Look at the statement If 9 is an odd number, then 9 is divisible by 2. The first part is true and second part is false so logically the statement is false. The contrapositive is: If 9 is not divisible by 2, then 9 is not an odd number. The first part is true, the second part is false so the statement is true. Now the converse of the contrapositive If 9 is not an odd number, then 9 is not divisible by two. The first part is false and the second part is true so it is false. The original statement is if p then q,the contrapositive is if not q then not p and the converse of that is if not p then not q
In order to determine if this is an inverse, you need to share the original conditional statement. With a conditional statement, you have if p, then q. The inverse of such statement is if not p then not q. Conditional statement If you like math, then you like science. Inverse If you do not like math, then you do not like science. If the conditional statement is true, the inverse is not always true (which is why it is not used in proofs). For example: Conditional Statement If two numbers are odd, then their sum is even (always true) Inverse If two numbers are not odd, then their sum is not even (never true)
a conditional and its contrapositive