Yes.
Atom in the ground state is stable but atom in excited state is not stable the main reason for this is their energies.Atoms in excited state has more energy so they undergo chemical reaction so they are not stable but atoms in ground state has less energy than the excited state so they dont undergo chemical reaction.
Yes, because an atom in an excited state will normally give off energy and go to a less-excited state or to its ground state. Some atoms have long-lived excited states and are called "metastable".
A hydrogen atom expands as it moves from its ground state to an excited state. This is because the electron in the excited state is farther away from the nucleus, increasing the average distance between the electron and proton in the atom.
An atom is in its ground state when all the electrons in the atom occupy orbitals that result in the minimum chemical potential energy for the atom as a whole. An excited atom is one that stores (at least for a brief interval) additional chemical potential energy as a result of at least one of the electrons in it occupying an orbital with higher energy than the orbital(s) the electrons in the same atom would occupy in the ground state of the atom.
Only gamma, it is the process by which a metastable excited nuclear isomer of an isotope relaxes down to the ground state of the same isotope. Some metastable states must undergo multiple gamma decays through less excited metastable states to reach the ground state.
A shifting electron will always move from a more excited to a less excited state.
A shifting electron will always move from a more excited to a less excited state.
An atom will go into an excited state when the electrons are given extra energy. Then after the electrons have been excited it will eventually go back to ground state producing a light as it returns to its normal state.
Cuprous ions (Cu+) have a partially filled d orbital, making them prone to oxidation to Cu2+ in order to achieve a more stable d10 electron configuration. On the other hand, cupric ions (Cu2+) have a full d orbital, resulting in greater stability due to the filled electron subshell.
Thermodynamically stable means that a system is in a state where its energy is at a minimum and it is in equilibrium. This state is achieved when the system has reached its lowest energy level and is not easily disturbed. A thermodynamically stable system is less likely to undergo spontaneous changes or reactions, making it more stable overall.
SnCl2 is more stable than SnCl4 primarily due to the oxidation states of tin in these compounds. In SnCl2, tin is in a +2 oxidation state, which is more stable due to its ability to achieve a stable electron configuration. In contrast, SnCl4 has tin in a +4 oxidation state, which is less stable because it has a higher positive charge and is more susceptible to hydrolysis and other reactions. Additionally, SnCl4 can be less stable in the presence of moisture since it can readily form SnCl2 and HCl.
The heat energy of a substance is determined by how active its atoms and molecules are. A hot object is one whose atoms and molecules are excited and show rapid movement. A cooler object's molecules and atoms will be less excited and show less movement. When these guys are in the excited state, they take up a lot of space because they're moving around so fast. When the atoms and molecules settle down, or cool down, they take up less space...