answersLogoWhite

0


Best Answer

No. Perhaps an analogy would help understand the answer to this question.

When you are at the store, and you are in a line waiting to be paid, opening up another line or more should increase how fast people can move through the store. That is a parallel operation. (If you have to go through one line at the store and then go through another line at the store, that is a series operation).

Similarly, when a current meets a resistance, putting additional resistance in PARALLEL allows some of the current to divert to this new path or paths, allowing more current to flow through the combination of resistances. Since more current is flowing though the combined resistances, the equivalent resistance is less since less resistance always means more flow.

User Avatar

Wiki User

11y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

13y ago

The total effective resistance of a parallel circuit will always be lower than the lowest resistance in a parallel network. When an additional current path is added, the total current rises, indicating that the total resistance has been reduced. This is true regardless of individual resistance values.

This answer is:
User Avatar

User Avatar

Wiki User

10y ago

'Low' resistance represents a 'high' load, because loads are expressed in terms of the currents they draw, and low-resistance loads draw high currents.

Every time you add another branch to a parallel circuit (assuming that each load is resistive), the effective resistance of the circuit reduces, and the load current drawn from the supply increases. In other words, every time you add another branch, you are increasing the load on the supply system. If the load becomes excessive, then the protective device (fuse or circuit breaker) will eventually disconnect that circuit.

This answer is:
User Avatar

User Avatar

Wiki User

14y ago

Yes

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is the total resistance of all the parallel loads more than the smallest individual resistance?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

How to calculate a parallel circuit with more than one load in its branches?

If a 'parallel' circuit has more than one load in its (not "it's"!) branches, then it is not a parallel circuit, but a series-parallel circuit! To resolve the circuit, you must first resolve the total resistance of the loads within each branch.


Why do the current changes?

The amount of current that flows in a circuit is proportional to the voltage and inversely proportional to the resistance, as per Ohms law (I=V/R) where I is current.When resistances (IE loads) are connected in series, the total resistance is the sum of the loads (IE Rtotal = R1 + R2 + R3 ...)When they are connected in parallel, the total resistance is the inverse sum of the reciprocals of each resistance (IE 1/Rtotal = 1/R1 + 1/R2 + 1/R3 ...)Therefore in parallel the total resistance is much lower, and therefore at the same voltage more current will flow.


What lasts longer a series circuit or a parallel curcuit?

They will both last for the same amount of time. In both situations all of the battery's power is being used, but in parallel, you can separately control the individual loads that you put on the circuit with switches. Hope that helps


How many number of loads does parallel circuit have?

energy source :)


What trouble that exist in parallel circuit if one of the load in parallel circuit is shorted?

when loads are connected in parallel it means that they share common nodes at both the ends i-e voltage across all the loads is the same. when one of the load in such a circuit is shorted i-e its voltage is made zero volts, voltage across the other loads goes to zero because of parallel connection and they gets shorted also.

Related questions

What is the relationship between total resistance and the resistance across each load?

There is no such thing as 'resistance across' a load! The correct term is 'resistance of a load'.To answer your question, it depends on how the loads are connected. If they are connected in series, for example, the total resistance is equal to the sum of the individual resistances. If they are connected in parallel, then you must use the following equation: 1/R = 1/R1 + 1/R2 + 1/R3 + etc.For any other connection, you will have to work it out individually.


What is the total resistance for 2.2 ohm 1.5 ohm 3.8 ohm 4.5 ohm?

If the loads are wired in series, add the three values to get the total R. If they are in parallel then the formula is 1/R = 1/R1 + 1/R2 + 1/R3 The total resistane when resistors are in parallel is ALWAYS LESS than the lowest individual value.


How to calculate a parallel circuit with more than one load in its branches?

If a 'parallel' circuit has more than one load in its (not "it's"!) branches, then it is not a parallel circuit, but a series-parallel circuit! To resolve the circuit, you must first resolve the total resistance of the loads within each branch.


Why do the current changes?

The amount of current that flows in a circuit is proportional to the voltage and inversely proportional to the resistance, as per Ohms law (I=V/R) where I is current.When resistances (IE loads) are connected in series, the total resistance is the sum of the loads (IE Rtotal = R1 + R2 + R3 ...)When they are connected in parallel, the total resistance is the inverse sum of the reciprocals of each resistance (IE 1/Rtotal = 1/R1 + 1/R2 + 1/R3 ...)Therefore in parallel the total resistance is much lower, and therefore at the same voltage more current will flow.


How are the loads in parallel circuit connected?

Parallel to each other.


Which uses more energy parallel circuit or a series circuit?

That depends. For example, if the circuit is consisted of two resistors, 2 ohms each, the equivalent resistance (Req) of these two resistors in series is 4 ohms, and the Req of these two resistors in parallel is 1 ohm. If the same voltage is applied, say 4 V.power consumed in a resistance = V2/R.The parallel circuit: Power = 4 * 4 / 1 = 16 [W].The series circuit: Power = 4 * 4 / 4 = 4 [W].With everything else the same, a parallel circuit consumes more energy than a series circuit.Note that circuits of only simple resistors are discussed. You need to consider each circuit on its merit.================================AnswerIt depends. In both cases, the total energy expended will be the sum of the energies expended by each individual load.


How could you find the purpose of a parallel circuit?

For an electrical load, such as a lamp, heater or motor, to operate at its rated power, it must be subject to its rated voltage which always corresponds to the supply voltage. For this to happen, individual loads must be connected in parallel with the supply and with each other. So all the electrical loads in your home, in your car, etc., are ALL connected in parallel.


What is an advantages of a parallel?

The same supply voltage is across all parallel loads.


What would be the effect of adding a load in parallel to a parallel circuit?

Ohm's Law says Voltage = Current x Resistance With constant voltage, an increase in resistance decreases the current. Now the load can be added in two basic ways. If the load is added in series the resistance will increase. If you add load in parallel the resistance will decrease and the current will increase from the source.


What is parallel electricity?

i shocking sign of tunderAnswerThere is no such thing as 'parallel electricity'; you are probably thinking about 'parallel circuits'?A parallel circuit is one in which invidual loads are arranged in separate 'branches', with each branch subject to a common supply voltage. The individual branch currents may be added in order to determine the supply current.


What are the limitations of ohms law?

It requires the ability to multiply and divide. It requires the ability to mentally separate voltage from current and to understand resistance and when to add resistance for series circuits and worse identify and calculate parallel loads.


What lasts longer a series circuit or a parallel curcuit?

They will both last for the same amount of time. In both situations all of the battery's power is being used, but in parallel, you can separately control the individual loads that you put on the circuit with switches. Hope that helps