Codon
The primary structure of a protein is determined by the sequence of amino acids in the protein chain. This sequence is encoded by the gene corresponding to that protein. It plays a crucial role in determining the higher-order structures and biological functions of the protein.
The acids attached to the glycerol molecule in a triglyceride are typically fatty acids. These fatty acids can vary in length and degree of saturation, which influences the physical properties of the triglyceride, such as its melting point and health effects.
The sequence of amino acids in a protein is directly determined by the sequence of nucleotides in the gene that codes for that protein. This process occurs during protein synthesis, where the genetic information is transcribed from DNA to mRNA and then translated into a specific sequence of amino acids.
The classification of a molecule as an acid, base, or neutral is determined by its ability to donate or accept protons. Acids donate protons, bases accept protons, and neutral molecules do not readily donate or accept protons. The specific properties or characteristics of a molecule that determine its classification include its chemical structure, the presence of functional groups that can donate or accept protons, and its behavior in a chemical reaction.
A protein molecule is a long chain of amino acids. There are 22 different amino acids and their chemical properties determine the shape of the protein which determines the function of the protein.
ribosomes in the cytoplasm
The primary structure of a protein is the sequence of amino acids in the protein. This is determined by the sequence of bases in the DNA ie by the genetic code. Each group of three bases in DNA codes for one amino acid in the protein ie it is a triplet code.
The sequence of amino acids in a protein is determined by the sequence of nucleotides in the mRNA, and this is determined by the sequence of nucleotide bases in the DNA.
The sequence of basis on the DNA molecule is what directs the sequence of amino acids in the protein molecule - that's how it all links together! So, the sequence of bases in DNA codes for the sequence of amino acids of a protein.
They are determined by the sequence and number of amino acids.
the type and sequence of its amino acids
YES
At the heart of it, DNA is the molecule that codes for the sequence of amino acids. DNA does this somewhat indirectly because its code is transcribed to mRNA, whose codons pair with specific tRNA anticodons, which are associated with a specific amino acid.
The order of amino acids in a protein is determined by the sequence of nucleotides in the gene that codes for that protein. This sequence is transcribed into messenger RNA (mRNA) and then translated into a specific sequence of amino acids during protein synthesis.
The sequence of amino acids in a protein is determined by the sequence of nucleotides in the gene that codes for that protein. This gene is transcribed into messenger RNA (mRNA) which is then translated into a specific sequence of amino acids based on the genetic code. Each set of three nucleotides (codon) in the mRNA specifies a particular amino acid to be added to the growing protein chain.
The order of amino acids in a polypeptide chain (protein) is determined by the order of nucleotide triplets in the messenger RNA, or mRNA, chain that was transcribed from the DNA inside the nucleus for that specific protein.
The order of amino acids in a protein is determined by the sequence of nucleotides in a gene, specifically in the mRNA molecule that is transcribed from the gene. This sequence is read by ribosomes during protein synthesis, which match each codon (a group of three nucleotides) with the corresponding amino acid.