i don't have an idea but i believe it is when they are stable
At equilibrium distance, the forces between atoms or molecules are balanced, resulting in stable and minimum potential energy. Any deviation from this distance would cause a change in potential energy as the forces try to bring the atoms back to equilibrium. This results in a minimum potential energy state at the equilibrium distance.
At perihelion, the planet is closer to the Sun, and moves faster, that means that the potential energy is at a minimum, and the kinetic energy at a maximum. The sum of kinetic + potential energy, of course, remains constant.At perihelion, the planet is closer to the Sun, and moves faster, that means that the potential energy is at a minimum, and the kinetic energy at a maximum. The sum of kinetic + potential energy, of course, remains constant.At perihelion, the planet is closer to the Sun, and moves faster, that means that the potential energy is at a minimum, and the kinetic energy at a maximum. The sum of kinetic + potential energy, of course, remains constant.At perihelion, the planet is closer to the Sun, and moves faster, that means that the potential energy is at a minimum, and the kinetic energy at a maximum. The sum of kinetic + potential energy, of course, remains constant.
A pendulum is a classic example where kinetic energy is continually converted to potential energy and vice versa. As the pendulum swings, it reaches its highest point where it has maximum potential energy and minimum kinetic energy, and at the lowest point of its swing, the opposite is true with maximum kinetic energy and minimum potential energy.
The energy change in a spinning spiral is converted between potential energy and kinetic energy as the spiral moves up and down due to its spinning motion. At the top point of the spiral, the potential energy is at its maximum, while the kinetic energy is at its minimum. Conversely, at the bottom point of the spiral, the kinetic energy is at its maximum, while the potential energy is at its minimum.
At the top of the second hill, the coaster has maximum potential energy and minimum kinetic energy. As the coaster descends, potential energy decreases while kinetic energy increases due to the conversion of potential energy into kinetic energy.
A ball at rest contains only potential energy. A ball in motion contains almost all kinetic energy. But it gets tricky here. A free falling ball that has not yet reached terminal velocity has no potential energy. That energy is being given up to kinetic energy. Once the ball reaches terminal velocity in Earth's atmosphere, air resistance holds back further conversion of potential energy to kinetic.
Potential energy is greater than kinetic energy when an object is at rest or at a high point. When potential energy is at its maximum, kinetic energy is at its minimum because the object is not in motion. As the object falls, potential energy is converted into kinetic energy.
Potential energy is at its lowest when an object is at its lowest point in a system, such as the ground level. This is because potential energy is the energy stored in an object due to its position in a force field, and the lowest point represents the minimum level of stored energy.
As the ball is dropped, its potential energy is converted into kinetic energy. The potential energy decreases as the ball falls due to gravity, while the kinetic energy increases. At the moment of impact, the kinetic energy is maximum, and the potential energy is minimum.
The energy of a compound pendulum is constantly changing between potential energy and kinetic energy as it oscillates. At the highest points of the swing, it has maximum potential energy but minimum kinetic energy, and at the lowest point of the swing, it has maximum kinetic energy but minimum potential energy. The total energy of the pendulum remains constant unless there are external factors such as air resistance or friction.
At position E, the potential energy of the pendulum is at its maximum. As the pendulum swings, the potential energy is converted into kinetic energy, reaching a minimum at the lowest point of the swing. The potential energy is constantly changing as the pendulum moves due to the force of gravity acting on it.
The relationship between potential energy and reaction progress is that potential energy changes as a reaction progresses. At the beginning of a reaction, potential energy is high as reactants are being converted into products. As the reaction progresses, potential energy decreases until it reaches a minimum at the point of maximum stability, known as the transition state.